The SRSF1 gene, located on human chromosome 17, codes for a fundamental splicing factor that belongs to the family of serine/arginine – rich proteins (SR proteins), namely the SRSF1 protein. SR protein family members are known to regulate many alternative splicing events in the cell, together with other RNA binding proteins (RBPs). It is well documented in literature that the splicing factor SRSF1 plays, amongst a variety of equally important biological functions, an essential role in gene expression regulation and cancer progression, and its overexpression has been linked to several tumor types. Thus, its production is strictly modulated through complex alternative splicing programs which give rise to six SRSF1 transcripts (isoforms I to VI). Among the six isoforms, only isoform I codes for the functional protein. As regards isoforms II, III and IV, they are retained in the nucleus as long non-coding RNAs (lncRNAs), while isoforms V and VI are rapidly exported in the cytoplasm and degraded by the non-sense mediated mRNA decay (NMD) pathway. Importantly, the relative abundance of the six SRSF1 isoforms is finely tuned in response to cell density. In our experimental model, cells seeded al low density (LD) show morphological, gene expression and metabolic properties typical of mesenchymal cells at the metastasizing front of the tumor, while cells grown at high density (HD) experience a condition similar to that encountered in the bulk of the tumor. Interestingly, cell density induces metabolic reprogramming and HD cells are characterized by aerobic glycolysis while LD cells perform oxidative phosphorylation. This metabolic switch is accompanied by activation of the HIF-1 pathway. We found that metabolic reprogramming directly impinges on the SRSF1 splicing program. Indeed, treatments with cell permeable derivatives of succinate and α-ketoglutarate, two intermediates of the Krebs cycle, affect the splicing profile of SRSF1 transcripts. On the basis of this result, we hypothesized that a member of the 2-Oxoglutarate dependent dioxygenases (2-OGDD) superfamily, whose activity is controlled by the oxygen levels and by the ratio between α-ketoglutarate and succinate, could be involved in this splicing event. We focused on the bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 which has been found to control splice site choice by interacting with a number of splicing regulators. By knock-down experiments we proved that JMJD6 controls splicing of SRSF1 transcripts in this way unveiling a link between glucose metabolism and splicing regulation. This finding opens new perspectives for the analysis of gene expression regulation in cancer.
"Studio della correlazione tra il metabolismo cellulare e la regolazione dell'espressione genica di SRSF1 mediante splicing alternativo" Nel laboratorio di biologia cellulare e molecolare del nucleo del Dott. Giuseppe Biamonti, è stato dimostrato che l’espressione delle isoforme di splicing alternativo del gene SRSF1 è indotta da cambiamenti del metabolismo del glucosio. Questo risultato cruciale è stato ottenuto utilizzando una linea cellulare derivante da adenocarcinoma del colon umano (SW480) e sfruttando la semina ad alta densità cellulare per indurre stress nutritivo, al quale le cellule rispondono rimodulando il proprio profilo metabolico. Le cellule seminate a bassa densità “LD” (5x10^4 cellule/cm^2) mostrano caratteristiche morfologiche e di espressione genica tipiche delle cellule mesenchimali che si tovano sul fronte metastatico del tumore e mostrano un profilo metabolico di tipo fosforilativo, in questa condizione si osserva un profilo di splicing del gene SRSF1 che vede predominare l’espressione dell’isoforma codificante rispetto alle altre 5. Contrariamente, le cellule seminate ad alta densità “HD” (4x10^5 cellule/cm^2) mostrano caratteristiche simili alle cellule che si trovano all’ interno della massa del tumore e un metabolismo di tipo fermentativo, che porta ad un aumento del consumo di glucosio, della produzione di lattato e dei livelli di succinato, in questa condizione metabolica si intensificano gli eventi di splicing alternativo che portano alla over-produzione dell’ isoforma III. Lo switch metabolico che si osserva nelle cellule HD è associato anche all’attivazione del pathway di HIF1, responsabile della risposta all’ipossia. L’evidente correlazione tra lo splicing alternativo e il metabolismo è stata confermata dopo somministrazione di succinato alle cellule LD e di α- ketoglutarato alle cellule HD, che ha portato a una inversione dei profili di splicing normalmente osservati; il succinato ha promosso eventi di splicing alternativo nelle cellule LD mentre l’ α-ketoglutarato ha indotto la produzione dell’isoforma I nelle cellule HD. Sulla base dei risultati ottenuti, è stato ipotizzato che un membro della famiglia delle proteine 2-OGDD (2-oxoglutarate dependent dioxygenases) potesse essere coinvolto negli eventi di splicing osservati, poichè l’attività di queste proteine è dipendente/controllata sia dai livelli di ossigeno che dalla ratio tra succinato e α-ketoglutarato intracellulare. Specificatamente l’attenzione si è focalizzata sulla proteina JMJD6 che è nota per essere anche coinvolta in alcuni processi della regolazione dello splicing. Tramite esperimenti di knock-down in cellule LD è stato accertato il coinvolgimento di JMJD6 anche nella regolazione dello splicing dei trascritti del gene SRSF1. Per tale scoperta, ad oggi, JMJD6 rappresenta il link tra il metabolismo del glucosio e la regolazione dello splicing del trascritto del gene SRSF1. L’ insieme di questi dati rappresenta il punto di inizio per ulteriori analisi finalizzate alla validazione del modello proposto.
"Linking cellular metabolism and alternative splicing regulation of the SRSF1 gene expression"
FRANZOSO, EUGENIO
2017/2018
Abstract
The SRSF1 gene, located on human chromosome 17, codes for a fundamental splicing factor that belongs to the family of serine/arginine – rich proteins (SR proteins), namely the SRSF1 protein. SR protein family members are known to regulate many alternative splicing events in the cell, together with other RNA binding proteins (RBPs). It is well documented in literature that the splicing factor SRSF1 plays, amongst a variety of equally important biological functions, an essential role in gene expression regulation and cancer progression, and its overexpression has been linked to several tumor types. Thus, its production is strictly modulated through complex alternative splicing programs which give rise to six SRSF1 transcripts (isoforms I to VI). Among the six isoforms, only isoform I codes for the functional protein. As regards isoforms II, III and IV, they are retained in the nucleus as long non-coding RNAs (lncRNAs), while isoforms V and VI are rapidly exported in the cytoplasm and degraded by the non-sense mediated mRNA decay (NMD) pathway. Importantly, the relative abundance of the six SRSF1 isoforms is finely tuned in response to cell density. In our experimental model, cells seeded al low density (LD) show morphological, gene expression and metabolic properties typical of mesenchymal cells at the metastasizing front of the tumor, while cells grown at high density (HD) experience a condition similar to that encountered in the bulk of the tumor. Interestingly, cell density induces metabolic reprogramming and HD cells are characterized by aerobic glycolysis while LD cells perform oxidative phosphorylation. This metabolic switch is accompanied by activation of the HIF-1 pathway. We found that metabolic reprogramming directly impinges on the SRSF1 splicing program. Indeed, treatments with cell permeable derivatives of succinate and α-ketoglutarate, two intermediates of the Krebs cycle, affect the splicing profile of SRSF1 transcripts. On the basis of this result, we hypothesized that a member of the 2-Oxoglutarate dependent dioxygenases (2-OGDD) superfamily, whose activity is controlled by the oxygen levels and by the ratio between α-ketoglutarate and succinate, could be involved in this splicing event. We focused on the bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 which has been found to control splice site choice by interacting with a number of splicing regulators. By knock-down experiments we proved that JMJD6 controls splicing of SRSF1 transcripts in this way unveiling a link between glucose metabolism and splicing regulation. This finding opens new perspectives for the analysis of gene expression regulation in cancer.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/23901