This thesis is addressed to setup a cellular system representing a suitable model for the study of Alzheimer's disease (AD), a neurodegenerative pathology that represents the most common form of dementia. AD brain is characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NTFs), which are composed of phosphorylated Tau protein. One of the main problems in the study of this pathology and other neurodegenerative diseases is the fact that there are not suitable experimental cellular systems reproducing the wide network of neuronal connections and the funtionality of the human nervous system. Different immortalized cell lines have been used to study AD. One of the more frequently used is the SH-SY5Y cell line, derived from human neuroblastoma. Anyway, these cellular lines lack many of the features that define neurons, including neuronal morphology, inhibited cell division and expression of neuron specific markers. The aim of this work is therefore to establish a cellular system with morphological and biochemical features resembling those of mature human neurons. The SH-SY5Y cell line was cultured with different types of culture media, in order to define the optimal culture condition in terms of proliferative capacity and ability of the cells to grow adherent to the plate. We chose a mix 1:1 of MEM and F-12, which therefore was used to grow the cells in all subsequent steps. SH-SY5Y cells were then treated adding to he culture medium different combinations of differentiating factors and they were analysed from the morphological point of view to identify the combination generating neuronally differentiated cells. We found that pre-treatment for 5 days with retinoic acid 10 μM followed by seven days of treatment with BDNF, NRG, NGF and VitD3 gives cells with neuronal morphology. Cell body became smaller, cells developed long and branched neurites forming a network and the growth is inhibited. Treated cells were biochemically analysed for the expression of typically neuronal proteins like SV2A, βIII tubulin and different forms of phosphorylated Tau protein. The expression of all these proteins resulted increased in cells treated with the combination of all differentiating factors. Thus this treatment was identified as the best one to obtain differentiated SH-SY5Y cells. We also created a cell line transfected with a plasmid containing the sequence encoding for the Enhanced Green Protein (EGFP). Since this protein confers fluorescence when irradiated with UV light, it was used to better follow the differentiation of cells. Unluckily, EGFP seemed to be poorly expressed in neurites. Thus, transfection was not useful to better follow the cellular differentiation. Once defined growth and differentiation systems, cells were treated with different concentrations of Aβ, for different times, in order to investigate possible toxic effects. DMSO at the same Aβ concentrations was used as control. Cells did not exhibit morphological effects due to Aβ treatment. In contrast, biochemical analysis revealed increased levels of Tau[pY18], which is found in NTFs of AD brain and whose levels result increased in cell culture exposed to Aβ.
Il lavoro di tesi è rivolto allo sviluppo di un sistema cellulare che rappresenti un modello di studio per il morbo di Alzheimer (AD), una patologia neurodegenerativa che costituisce la forma più comune di demenza senile. Il cervello dei pazienti affetti da AD è caratterizzato dalla presenza di placche di amiloide β (Aβ) e di ammassi neurofibrillari, composti principalmente da forme fosforilate della proteina Tau. Uno dei principali limiti nello studio di questa patologia, così come di tutte le malattie neurodegenerative, è la mancanza di modelli sperimentali idonei che permettano di riprodurre la complicata rete di connessioni neuronali e la funzionalità del sistema nervoso umano. Diverse linee cellulari immortalizzate sono utilizzate per lo studio dell’AD, tra cui la linea SH-SY5Y, costituita da cellule derivate da neuroblastoma umano. Queste linee cellulari mancano comunque di molte delle caratteristiche che definiscono i neuroni, quali la morfologia neuronale, inibizione della divisione cellulare ed espressione di marker proteici specifici per i neuroni. Lo scopo dello studio svolto per questa tesi è stato quindi quello di creare un modello cellulare avanzato generando cellule con caratteristiche morfologiche e biochimiche dei neuroni umani maturi. La linea cellulare SH-SY5Y è stata coltivata con diversi tipi di terreni di crescita in modo da stabilire quale permettesse la crescita migliore in termini di sopravvivenza, capacità di rimanere adese alla piastra e proliferazione. E’ stato scelto il mix 1:1 di MEM ed F-12, che è quindi stato utilizzato per la coltivazione delle cellule in tutti i passaggi successivi. Le cellule SH-SY5Y sono poi state trattate aggiungendo al terreno di crescita diverse combinazioni di fattori di differenziamento, ed analizzate dal punto di vista morfologico per identificare la combinazione risultante in cellule quanto più simili possibile ai neuroni umani maturi. Un pretrattamento con acido retinoico 10 μM per cinque giorni, seguita da una settimana di trattamento delle cellule con BDNF, NRG, NGF e VitD3 ha permesso di ottenere cellule con caratteristiche neuronali: il corpo cellulare rimpicciolito, lunghi neuriti ramificati che formano una rete fra le cellule, e inibizione della proliferazione. Le cellule sottoposte ai diversi tipi di trattamento sono state analizzate a livello biochimico per valutare l’espressione di alcune proteine tipicamente neuronali, quali SV2A, βIII tubulin e diverse forme fosforilate della proteina Tau. Per tutte le proteine analizzate, l’espressione è risultata maggiore nelle cellule trattate con la combinazione di tutti i fattori differenziativi. Pertanto questo trattamento è stato identificato come il migliore per produrre cellule SH-SY5Y differenziate. Abbiamo inoltre creato una linea cellulare trasfettata con un plasmide contente la sequenza codificante l’Enhanced Green Fluorescent Protein (EGFP). Poiché questa proteina conferisce fluorescenza alle cellule sotto luce UV, è stata usata per meglio seguire il differenziamento morfologico delle cellule. Sfortunatamente l’EGFP sembra essere poco espressa nei neuriti, per cui la trasfezione non è risultata utile per visualizzare meglio il differenziamento morfologico cellulare. Una volta messo a punto il sistema di crescita e differenziamento, le cellule sono state sottoposte a trattamenti con diverse concentrazioni di Aβ, per tempi diversi, in modo da valutarne gli eventuali effetti tossici. Il controllo è stato fatto trattando le cellule con DMSO alle stesse concentrazioni di Aβ. Le cellule non hanno mostrato particolari effetti morfologici dovuti all’Aβ. Di contro, l’analisi biochimica ha permesso di rilevare aumentati livelli di Tau[pY18], la cui presenza si riscontra nei NTFs dei pazienti AD e i cui livelli si dimostrano aumentati nelle culture cellulari esposte ad Aβ.
Messa a punto di un sistema cellulare per lo studio della patologia di Alzheimer - Establishing a human cellular system to model Alzheimer's Disease
ROMANO, ANNA
2013/2014
Abstract
This thesis is addressed to setup a cellular system representing a suitable model for the study of Alzheimer's disease (AD), a neurodegenerative pathology that represents the most common form of dementia. AD brain is characterized by the presence of β-amyloid (Aβ) plaques and neurofibrillary tangles (NTFs), which are composed of phosphorylated Tau protein. One of the main problems in the study of this pathology and other neurodegenerative diseases is the fact that there are not suitable experimental cellular systems reproducing the wide network of neuronal connections and the funtionality of the human nervous system. Different immortalized cell lines have been used to study AD. One of the more frequently used is the SH-SY5Y cell line, derived from human neuroblastoma. Anyway, these cellular lines lack many of the features that define neurons, including neuronal morphology, inhibited cell division and expression of neuron specific markers. The aim of this work is therefore to establish a cellular system with morphological and biochemical features resembling those of mature human neurons. The SH-SY5Y cell line was cultured with different types of culture media, in order to define the optimal culture condition in terms of proliferative capacity and ability of the cells to grow adherent to the plate. We chose a mix 1:1 of MEM and F-12, which therefore was used to grow the cells in all subsequent steps. SH-SY5Y cells were then treated adding to he culture medium different combinations of differentiating factors and they were analysed from the morphological point of view to identify the combination generating neuronally differentiated cells. We found that pre-treatment for 5 days with retinoic acid 10 μM followed by seven days of treatment with BDNF, NRG, NGF and VitD3 gives cells with neuronal morphology. Cell body became smaller, cells developed long and branched neurites forming a network and the growth is inhibited. Treated cells were biochemically analysed for the expression of typically neuronal proteins like SV2A, βIII tubulin and different forms of phosphorylated Tau protein. The expression of all these proteins resulted increased in cells treated with the combination of all differentiating factors. Thus this treatment was identified as the best one to obtain differentiated SH-SY5Y cells. We also created a cell line transfected with a plasmid containing the sequence encoding for the Enhanced Green Protein (EGFP). Since this protein confers fluorescence when irradiated with UV light, it was used to better follow the differentiation of cells. Unluckily, EGFP seemed to be poorly expressed in neurites. Thus, transfection was not useful to better follow the cellular differentiation. Once defined growth and differentiation systems, cells were treated with different concentrations of Aβ, for different times, in order to investigate possible toxic effects. DMSO at the same Aβ concentrations was used as control. Cells did not exhibit morphological effects due to Aβ treatment. In contrast, biochemical analysis revealed increased levels of Tau[pY18], which is found in NTFs of AD brain and whose levels result increased in cell culture exposed to Aβ.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/24113