This work consists of a geochemical study of Cenozoic volcanic rocks associated to the Dead Sea Transform Fault in Jordan. This volcanic activity is considered to be part of the voluminous Arabian intraplate Cenozoic volcanism, which took place from the Oligocene to the Quaternary and formed the Western Arabian Volcanic province (WAVP), one of the largest alkali basalt provinces in the world scattered from Syria, Saudi Arabia, Jordan to Yemen. The most intense volcanic activity was nearly contemporaneous with the separation of Arabia from the African plates that formed the Red Sea. Although this volcanism is widespread in the entire western Arabian plate, uplift or volcanism of similar scale is missing in the corresponding area of the African plate, to the west of the Red Sea. For this reason, some authors suggested that, rather than triggered by the Red Sea rifting, the mantle melting producing the voluminous WAVP was caused by a channelization of the Afar plume beneath the thick Arabian plate. The debate on the link between the WAVP volcanism and the Red Sea rifting is still ongoing. In this context, the present study wants to understand the origin of the volcanism in the Dead Sea Transform Fault, and how it links to the large lava field in Arabia. The few studies on the Jordan volcanism (i.e. Shaw et al., 2003) are focused on the Harrat Ash Shaam, which is the most extended volcanic field on the Arabian plate, in Syria, Jordan and Saudi Arabia. On the other hand, the volcanism along the Dead Sea Transform Fault is nearly unknown. With this project we want to define the style of magmatism and mantle source of the different volcanic fields exposed in the region, with the ultimate goal of understanding the link between the volcanic activity and transform fault system. To do so, we performed a petrological and geochemical study to determine the major and minor element composition of basalts from the eastern margin of the Dead Sea Transform Fault. The study is conducted on 50 samples from three different areas: Governorship of Al-Tafila (42 samples), Governorship of Ma’An (6 samples) and the Governorship of Al-Karak (2 samples). The basalt samples also include 5 mantle xenoliths. The most representative samples have been selected on the basis of texture and provenance for a microstructural study at the optical microscope on thin sections. Samples were then crushed, pulverized, and melted to glass beads using the Electric Furnace NIEKA E1. A ratio of 1:10 of sample/flux has been used in order to produce glass beads to be analyzed for major and minor element compositions by XRF. Major (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5) and minor (Cr, Ni, Co, Sr, Ba) element compositions acquired by XRF showed extremely good results with high accuracy. Based on these results we can define two main magmatic series (according to TAS MacDonald 1968): alkaline picrobasalts (82%) and transitional sub-alkaline basalts (18%). The picrobasalts are characterized by locally very high values of MgO (9-14.5 wt %) and low values of SiO2 (41-45 wt %), suggesting a high mantle potential temperature and limited extent of magma chamber fractionation processes. The basalts are characterized by lower values of MgO (7-10 wt %) and higher values of SiO2 (46-48 wt %), which, locally, require local fractionation in magma chambers. Covariations in MgO with Al2O3, CaO, TiO2, K2O and minor (Ni, Cr) elements of the two series form subparallel trends, suggesting the derivation from different primitive magmas. Notably, the basalts are different to those of the Harrat Ash Shaam (Shaw et al. 2003), where no picrites have been reported. This suggest a difference between the magmatism along the Dead Sea Transform and the voluminous lava field. The optical microscope study of the mantle xenoliths demonstrated that the hypothetical mantle source its fertile and haven’t suffered too many melt extractions, as it has Spinel Lherzolite (Cpx> 5%).
Questo lavoro consiste in uno studio geochimico di rocce vulcaniche Cenozoiche associate alla Faglia Trasforme del Mar Morto in Giordania. Questa attività vulcanica è considerata parte del voluminoso vulcanismo cenozoico della placca araba, che ebbe luogo dall'Oligocene al Quaternario e formò la provincia vulcanica dell'Arabia occidentale (WAVP), una delle più grandi province alcaline basaltiche del mondo. Sebbene questo vulcanismo sia diffuso in tutta la placca araba occidentale, manca un sollevamento o vulcanismo di scala simile nella corrispondente area della placca africana, a ovest del Mar Rosso. Per questo motivo, alcuni autori hanno suggerito che, piuttosto che innescata dal rifting del Mar Rosso, la fusione del mantello che ha prodotto il voluminoso WAVP sia stata causata da una canalizzazione del pennacchio di Afar sotto la spessa placca araba. Il dibattito sul legame tra il vulcanismo WAVP e il rifting del Mar Rosso è ancora in corso. In questo contesto, il presente studio vuole comprendere l’origine del vulcanismo nella faglia di trasformazione del Mar Morto e come si collega al grande campo di lava in Arabia. I pochi studi sul vulcanismo della Giordania (i.e. Shaw et al., 2003) si concentrano sull'Harrat Ash Shaam, che è il campo vulcanico più esteso sulla placca araba, in Siria, Giordania e Arabia Saudita. D'altra parte, il vulcanismo lungo la faglia trasforme del Mar Morto è quasi sconosciuto. Con questo progetto vogliamo definire lo stile del magmatismo e della sorgente del mantello dei diversi campi vulcanici esposti nella regione, con l'obiettivo finale di comprendere il legame tra l'attività vulcanica e i sistemi di faglie trasformi. Per fare ciò, abbiamo eseguito uno studio petrologico e geochimico per determinare la composizione degli elementi maggiori e minori dei basalti dal margine orientale della faglia di trasformazione del Mar Morto. Lo studio è condotto su 50 campioni provenienti da tre diverse aree: Governatorato di Al-Tafila (42 campioni), Governatorato di Ma’An (6 campioni) e Governatorato di Al-Karak (2 campioni). I campioni di basalto includono anche 5 xenoliti del mantello. I campioni più rappresentativi sono stati selezionati sulla base della tessitura e della provenienza per uno studio microstrutturale al microscopio ottico su sezioni sottili. I campioni sono stati poi frantumati, polverizzati e fusi in perle di vetro utilizzando il forno elettrico NIEKA E1. È stato utilizzato un rapporto di 1:10 campione/flux per produrre perle di vetro da analizzare per le composizioni degli elementi maggiori e minori mediante XRF. Le composizioni degli elementi maggiori e minori acquisite da XRF hanno mostrato risultati estremamente buoni con elevata precisione. Sulla base di questi risultati possiamo definire due principali serie magmatiche: picrobasalti alcalini (82%) e basalti sub-alcalini di transizione (18%). I picrobasalti sono caratterizzati da valori localmente molto elevati di MgO (9-14,5% in peso) e bassi valori di SiO2 (41-45% in peso), suggerendo un'elevata temperatura potenziale del mantello e un'entità limitata dei processi di frazionamento della camera magmatica. I basalti sono caratterizzati da valori più bassi di MgO (7-10% in peso) e valori più alti di SiO2 (46-48% in peso), che, localmente, richiedono un frazionamento locale in camere magmatiche. Covariazioni in MgO con elementi minori (Ni, Cr) delle due serie formano andamenti subparalleli, suggerendo la derivazione da diversi magmi primitivi. In particolare, i basalti sono diversi da quelli dell'Harrat Ash Shaam (Shaw et al. 2003), dove non sono state trovate picriti. Ciò suggerisce una differenza tra il magmatismo lungo la Trasforme del Mar Morto e il voluminoso campo di lava. Lo studio al microscopio ottico degli xenoliti del mantello ha dimostrato che l'ipotetica fonte del mantello è fertile e non ha subito troppe estrazioni di fuso, poiché contiene Spinello Lherzolite (Cpx> 5%).
Studio geochimico della composizione degli elementi maggiori di rocce vulcaniche Cenozoiche associate alla Faglia Trasforme del Mar Morto in Giordania
NAZHA, WAEL ALESSANDRO
2023/2024
Abstract
This work consists of a geochemical study of Cenozoic volcanic rocks associated to the Dead Sea Transform Fault in Jordan. This volcanic activity is considered to be part of the voluminous Arabian intraplate Cenozoic volcanism, which took place from the Oligocene to the Quaternary and formed the Western Arabian Volcanic province (WAVP), one of the largest alkali basalt provinces in the world scattered from Syria, Saudi Arabia, Jordan to Yemen. The most intense volcanic activity was nearly contemporaneous with the separation of Arabia from the African plates that formed the Red Sea. Although this volcanism is widespread in the entire western Arabian plate, uplift or volcanism of similar scale is missing in the corresponding area of the African plate, to the west of the Red Sea. For this reason, some authors suggested that, rather than triggered by the Red Sea rifting, the mantle melting producing the voluminous WAVP was caused by a channelization of the Afar plume beneath the thick Arabian plate. The debate on the link between the WAVP volcanism and the Red Sea rifting is still ongoing. In this context, the present study wants to understand the origin of the volcanism in the Dead Sea Transform Fault, and how it links to the large lava field in Arabia. The few studies on the Jordan volcanism (i.e. Shaw et al., 2003) are focused on the Harrat Ash Shaam, which is the most extended volcanic field on the Arabian plate, in Syria, Jordan and Saudi Arabia. On the other hand, the volcanism along the Dead Sea Transform Fault is nearly unknown. With this project we want to define the style of magmatism and mantle source of the different volcanic fields exposed in the region, with the ultimate goal of understanding the link between the volcanic activity and transform fault system. To do so, we performed a petrological and geochemical study to determine the major and minor element composition of basalts from the eastern margin of the Dead Sea Transform Fault. The study is conducted on 50 samples from three different areas: Governorship of Al-Tafila (42 samples), Governorship of Ma’An (6 samples) and the Governorship of Al-Karak (2 samples). The basalt samples also include 5 mantle xenoliths. The most representative samples have been selected on the basis of texture and provenance for a microstructural study at the optical microscope on thin sections. Samples were then crushed, pulverized, and melted to glass beads using the Electric Furnace NIEKA E1. A ratio of 1:10 of sample/flux has been used in order to produce glass beads to be analyzed for major and minor element compositions by XRF. Major (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5) and minor (Cr, Ni, Co, Sr, Ba) element compositions acquired by XRF showed extremely good results with high accuracy. Based on these results we can define two main magmatic series (according to TAS MacDonald 1968): alkaline picrobasalts (82%) and transitional sub-alkaline basalts (18%). The picrobasalts are characterized by locally very high values of MgO (9-14.5 wt %) and low values of SiO2 (41-45 wt %), suggesting a high mantle potential temperature and limited extent of magma chamber fractionation processes. The basalts are characterized by lower values of MgO (7-10 wt %) and higher values of SiO2 (46-48 wt %), which, locally, require local fractionation in magma chambers. Covariations in MgO with Al2O3, CaO, TiO2, K2O and minor (Ni, Cr) elements of the two series form subparallel trends, suggesting the derivation from different primitive magmas. Notably, the basalts are different to those of the Harrat Ash Shaam (Shaw et al. 2003), where no picrites have been reported. This suggest a difference between the magmatism along the Dead Sea Transform and the voluminous lava field. The optical microscope study of the mantle xenoliths demonstrated that the hypothetical mantle source its fertile and haven’t suffered too many melt extractions, as it has Spinel Lherzolite (Cpx> 5%).File | Dimensione | Formato | |
---|---|---|---|
Tesi magistrale Wael Nazha.pdf
accesso aperto
Descrizione: Tesi magistrale per la laurea in Geoscienze per lo sviluppo sostenibile
Dimensione
7.5 MB
Formato
Adobe PDF
|
7.5 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/28288