Advancements in synthetic biology combined with 3D Bioprinting techniques are driving innovation in the biomedical and agro-industrial fields. Synthetic biology enables the engineering of biological systems through genetic circuit design, while bacterial 3D bioprinting combined with material sciences facilitates the creation of engineered living materials (ELMs) by integrating living cells into hydrogel matrices. In recent years, the increasing demand for efficient and cost-effective monitoring solutions in agro-industrial processes has driven the development of biosensor technologies. This thesis, conducted at the laboratory of bioinformatics and synthetic biology at the University of Pavia, focuses on the development of ELMs with biosensor functionality, exploring their potential applications in agro-industrial processes, particularly for detecting acetate in digestate samples. Anaerobic digestion (AD) is a biochemical process that converts organic waste into biogas, primarily composed of methane and carbon dioxide, generating a residual by-product called digestate. Acetate is a crucial intermediate in this process, serving as a key substrate for methanogenic archaea, which convert it into methane, a valuable renewable energy source. Therefore, the concentration of acetate in digestate is a critical indicator of process efficiency and microbial community balance. Monitoring acetate concentrations in AD plants is essential for optimizing methane production, maintaining system stability, and ensuring the correct functionality of the plant itself. However, traditional detection methods, such as gas chromatography, are often time-consuming, expensive, and require specialized equipment. To address these limitations, bacterial biosensors have emerged as a promising alternative. In this study, a previously engineered Escherichia coli biosensor, designed with acetate-responsive promoters, was selected for evaluation and characterization. The biosensor operates by triggering the expression of a detectable red fluorescent protein (RFP) signal in response to acetate concentrations. The bacterial biosensor’s performance for acetate was assessed under various factors that could simulate real-world conditions and therefore potentially interfere with its sensitivity, specificity and robustness. Initial characterization was conducted in liquid assays, testing the biosensor’s response to varying concentrations of phosphates (commonly present during the bioprinting process) as well as volatile organic acids such as butyric and propionic acid (naturally produced during anaerobic digestion). Following this liquid-phase characterization, the biosensor was incorporated into an ELM system using a 3D bioprinting approach. The bioink consisted of engineered bacterial cells encapsulated in a hydrogel matrix composed of sodium alginate and gelatin, providing structural support and maintaining cell viability. In this solid-phase characterization, research focused on optimizing a standardized protocol for acetate detection, ensuring reproducibility and accuracy. Given the complexity of digestate samples, characterized by significant variations in color, dry matter content, and composition, particular emphasis was placed on determining the optimal dilution strategy for biosensor application, to find the dilution that best suits cell viability and RFP detection. Likewise, calibration curves were developed by correlating RFP expression to varying acetate concentration, allowing for the identification of a robust linear response range. Additionally, determining the biosensor’s limit of detection (LOD) was important in defining the biosensor’s analytical sensitivity and practical utility. With the optimized protocol in place, the biosensor was further evaluated in real-life matrices, specifically agro-industrial digestates derived from both laboratory-scale and industrial biogas (single and two stage) production plants.
I recenti progressi nella biologia sintetica, combinati con le tecniche di biostampa 3D, stanno favorendo l’innovazione nei settori biomedico e agro-industriale. La biologia sintetica consente l’ingegnerizzazione di sistemi biologici attraverso la progettazione di circuiti genetici, mentre la biostampa 3D di batteri consente lo sviluppo di materiali viventi ingegnerizzati (ELM) attraverso l’incorporazione di batteri in matrici idrogel. Negli ultimi anni, la crescente domanda di soluzioni per monitorare processi agro-industriali ha spinto lo sviluppo di nuove tecnologie a base di biosensori. Questa tesi, condotta presso il laboratorio di bioinformatica e biologia sintetica dell’Università degli studi di Pavia, si concentra sullo sviluppo di ELM con funzionalità di biosensore e sull’analisi delle loro potenziali applicazioni nei processi agro-industriali, con particolare riferimento al rilevamento dell’acetato nei campioni di digestato. La digestione anaerobica (AD) è un processo biochimico che trasforma i rifiuti organici in biogas, composto principalmente da metano e anidride carbonica, generando come sottoprodotto un residuo denominato digestato. L’acetato rappresenta un intermedio cruciale in questo processo, poiché funge da substrato per i metanogeni, responsabili della sua conversione in metano, preziosa fonte di energia rinnovabile. La concentrazione di acetato nel digestato è quindi un indicatore chiave dell’efficienza del processo e dell’equilibrio della comunità microbica. Il monitoraggio dei livelli di acetato negli impianti di digestione anaerobica è fondamentale per ottimizzare la produzione di metano, garantire la stabilità del sistema e assicurare il corretto funzionamento dell’impianto. Tuttavia, i metodi tradizionali di rilevamento, come la gascromatografia, risultano spesso costosi, dispendiosi in termini di tempo e richiedono strumentazioni specialistiche. Per superare queste limitazioni, i biosensori batterici si sono affermati come una valida alternativa. In questo studio è stato selezionato e caratterizzato un biosensore basato su un ceppo di Escherichia coli precedentemente ingegnerizzato, dotato di promotori responsivi all’acetato. Questo biosensore è progettato per attivare l'espressione di una proteina fluorescente rossa (RFP) in presenza di acetato, consentendo così il suo rilevamento. Le prestazioni del biosensore sono state valutate in condizioni che simulano ambienti reali, analizzando potenziali fattori di interferenza che potrebbero influenzarne sensibilità, specificità e robustezza. La prima fase di caratterizzazione è stata condotta testando la risposta del biosensore a diverse concentrazioni di fosfati e di acidi organici volatili, come l’acido butirrico e propionico. Successivamente, il biosensore è stato incorporato in un sistema ELM mediante un approccio di biostampa 3D. L'inchiostro biologico utilizzato era costituito da cellule batteriche ingegnerizzate incapsulate in una matrice idrogel, che garantisce il supporto strutturale e mantiene la vitalità cellulare. In questa fase, la ricerca si è focalizzata sull’ottimizzazione di un protocollo standardizzato per il rilevamento dell’acetato, con particolare attenzione alla riproducibilità e all’accuratezza del metodo. Data la complessità del digestato, è stato posto un focus specifico sull’individuazione della strategia di diluizione più adeguata, in modo da bilanciare la vitalità cellulare e l’intensità del segnale RFP. Allo stesso modo, sono state sviluppate curve di calibrazione per correlare l’espressione della RFP con diverse concentrazioni di acetato, consentendo così l’identificazione di un intervallo di risposta lineare affidabile. Una volta ottimizzato il protocollo, il biosensore è stato testato in matrici reali, utilizzando digestati agro-industriali provenienti sia da impianti di biogas di laboratorio che da impianti industriali (a uno e due stadi).
Applicazione di biosensori microbici per il rilevamento di acetato: caratterizzazione e testing su campioni agro-industriali
SCARCIA AJURIA, AMAIA
2023/2024
Abstract
Advancements in synthetic biology combined with 3D Bioprinting techniques are driving innovation in the biomedical and agro-industrial fields. Synthetic biology enables the engineering of biological systems through genetic circuit design, while bacterial 3D bioprinting combined with material sciences facilitates the creation of engineered living materials (ELMs) by integrating living cells into hydrogel matrices. In recent years, the increasing demand for efficient and cost-effective monitoring solutions in agro-industrial processes has driven the development of biosensor technologies. This thesis, conducted at the laboratory of bioinformatics and synthetic biology at the University of Pavia, focuses on the development of ELMs with biosensor functionality, exploring their potential applications in agro-industrial processes, particularly for detecting acetate in digestate samples. Anaerobic digestion (AD) is a biochemical process that converts organic waste into biogas, primarily composed of methane and carbon dioxide, generating a residual by-product called digestate. Acetate is a crucial intermediate in this process, serving as a key substrate for methanogenic archaea, which convert it into methane, a valuable renewable energy source. Therefore, the concentration of acetate in digestate is a critical indicator of process efficiency and microbial community balance. Monitoring acetate concentrations in AD plants is essential for optimizing methane production, maintaining system stability, and ensuring the correct functionality of the plant itself. However, traditional detection methods, such as gas chromatography, are often time-consuming, expensive, and require specialized equipment. To address these limitations, bacterial biosensors have emerged as a promising alternative. In this study, a previously engineered Escherichia coli biosensor, designed with acetate-responsive promoters, was selected for evaluation and characterization. The biosensor operates by triggering the expression of a detectable red fluorescent protein (RFP) signal in response to acetate concentrations. The bacterial biosensor’s performance for acetate was assessed under various factors that could simulate real-world conditions and therefore potentially interfere with its sensitivity, specificity and robustness. Initial characterization was conducted in liquid assays, testing the biosensor’s response to varying concentrations of phosphates (commonly present during the bioprinting process) as well as volatile organic acids such as butyric and propionic acid (naturally produced during anaerobic digestion). Following this liquid-phase characterization, the biosensor was incorporated into an ELM system using a 3D bioprinting approach. The bioink consisted of engineered bacterial cells encapsulated in a hydrogel matrix composed of sodium alginate and gelatin, providing structural support and maintaining cell viability. In this solid-phase characterization, research focused on optimizing a standardized protocol for acetate detection, ensuring reproducibility and accuracy. Given the complexity of digestate samples, characterized by significant variations in color, dry matter content, and composition, particular emphasis was placed on determining the optimal dilution strategy for biosensor application, to find the dilution that best suits cell viability and RFP detection. Likewise, calibration curves were developed by correlating RFP expression to varying acetate concentration, allowing for the identification of a robust linear response range. Additionally, determining the biosensor’s limit of detection (LOD) was important in defining the biosensor’s analytical sensitivity and practical utility. With the optimized protocol in place, the biosensor was further evaluated in real-life matrices, specifically agro-industrial digestates derived from both laboratory-scale and industrial biogas (single and two stage) production plants.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Scarcia_Ajuria_PDFA.pdf
embargo fino al 31/08/2025
Dimensione
19.49 MB
Formato
Adobe PDF
|
19.49 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/28563