Biofilm infections on implanted medical devices represent a major public health challenge, exacerbated by the growing bacterial resistance to antibiotics. This thesis examines the mechanisms of biofilm formation, focusing on the role of the Gram-positive bacterium Staphylococcus aureus, and explores the potential of metallic nanomaterials, particularly Prussian Blue nanoparticles (PBNPs), in treating these infections. The emergence of antibiotic-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), has made biofilm-associated infections even more critical, particularly in surgical site infections (SSIs), where therapeutic management is complex and often ineffective. In this context, PBNPs stand out as an innovative strategy due to their photothermal properties, enabling them to generate heat upon light irradiation, thereby inducing targeted antibacterial effects. This study evaluated the efficacy of laser-activated PBNPs under different experimental conditions. The nanoparticles were characterized using scanning electron microscopy (SEM) and UV-Vis spectroscopy, confirming their ability to absorb and convert light energy into heat. Preliminary antibacterial tests were conducted on bacterial biofilms using three experimental protocols, varying the suspension volume and irradiation power. Bacterial viability was assessed immediately after treatment (T0) and after 24 hours (T24) through MTT viability assays. The results indicated that the most effective condition for bacterial reduction was achieved with a suspension volume of 100 µL and a double irradiation power of 330 mW/cm² for 30 minutes, likely due to the enhanced interaction between the nanoparticles and laser energy in a confined liquid environment. However, comparisons with higher power protocols (e.g., 400 mW) highlighted the importance of balancing photothermal efficiency with potential risks such as overheating and cellular stress. These findings suggest that while PBNP-mediated photothermal therapy is a promising strategy, further optimizations are necessary to enhance its long-term antibacterial efficacy and prevent biofilm regrowth. The tested power settings were selected in accordance with biomedical safety standards, ensuring effective antibacterial action while minimizing the risk of thermal damage to surrounding tissues. In conclusion, the photothermal activation of PBNPs has demonstrated significant potential in combating bacterial biofilms. However, further studies are required to optimize its effectiveness and prevent infection recurrence over time.
Le infezioni da biofilm sui dispositivi medici impiantati rappresentano una sfida significativa per la salute pubblica, aggravata dalla crescente resistenza batterica agli antibiotici. Questa tesi analizza i meccanismi di formazione del biofilm, con particolare attenzione al ruolo del batterio gram-positivo Staphylococcus aureus, e valuta il potenziale dei nanomateriali metallici, in particolare delle nanoparticelle di Blu di Prussia (PBNPs), nel trattamento di queste infezioni. L’emergere di ceppi resistenti agli antibiotici, come lo Staphylococcus aureus meticillino-resistente (MRSA), ha reso le infezioni associate ai biofilm ancora più critiche, soprattutto nelle infezioni del sito chirurgico (SSI), in cui la gestione terapeutica risulta complessa e spesso inefficace. In questo contesto, le PBNPs si distinguono come una strategia innovativa grazie alle loro proprietà fototermiche, che consentono la generazione di calore in risposta all'irradiazione luminosa, inducendo effetti antibatterici mirati. Lo studio ha valutato l’efficacia delle PBNPs attivate da laser in diverse condizioni sperimentali. Le nanoparticelle sono state caratterizzate mediante microscopia elettronica a scansione (SEM) e spettroscopia UV-Vis, confermando la loro capacità di assorbire e convertire l'energia luminosa in calore. I test antibatterici preliminari sono stati condotti su biofilm batterici seguendo tre protocolli sperimentali, variando il volume della sospensione e la potenza di irradiazione. La vitalità batterica è stata valutata immediatamente dopo il trattamento (T0) e a 24 ore (T24) tramite il saggio di vitalità MTT. I risultati hanno evidenziato che la condizione più efficace per la riduzione batterica è stata ottenuta con un volume di sospensione di 100 µL e una doppia irradiazione di 330 mW/cm² per 30 minuti, probabilmente grazie alla maggiore interazione tra le nanoparticelle e l’energia laser in un ambiente liquido confinato. Tuttavia, il confronto con protocolli a potenze superiori (ad es. 400 mW) ha sottolineato l'importanza di bilanciare l’efficienza fototermica con i potenziali rischi, come il surriscaldamento e lo stress cellulare. Questi risultati suggeriscono che, sebbene la terapia fototermica mediata da PBNPs rappresenti una strategia promettente, sono necessarie ulteriori ottimizzazioni per migliorarne l’efficacia a lungo termine e prevenire la ricrescita del biofilm. Le potenze testate sono state selezionate in conformità agli standard di sicurezza per applicazioni biomediche, garantendo un’azione antibatterica efficace e riducendo al minimo il rischio di danni termici ai tessuti circostanti. In conclusione, l’approccio basato sull’attivazione fototermica delle PBNPs si è dimostrato promettente per il contrasto dei biofilm batterici. Tuttavia, ulteriori studi sono necessari per ottimizzarne l’efficacia e prevenire la ricomparsa delle infezioni nel tempo.
Nanoparticelle di Blu di Prussia per la terapia fototermica: una strategia innovativa nel trattamento delle infezioni batteriche
SPADAVECCHIA, LUISA ANNA
2023/2024
Abstract
Biofilm infections on implanted medical devices represent a major public health challenge, exacerbated by the growing bacterial resistance to antibiotics. This thesis examines the mechanisms of biofilm formation, focusing on the role of the Gram-positive bacterium Staphylococcus aureus, and explores the potential of metallic nanomaterials, particularly Prussian Blue nanoparticles (PBNPs), in treating these infections. The emergence of antibiotic-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), has made biofilm-associated infections even more critical, particularly in surgical site infections (SSIs), where therapeutic management is complex and often ineffective. In this context, PBNPs stand out as an innovative strategy due to their photothermal properties, enabling them to generate heat upon light irradiation, thereby inducing targeted antibacterial effects. This study evaluated the efficacy of laser-activated PBNPs under different experimental conditions. The nanoparticles were characterized using scanning electron microscopy (SEM) and UV-Vis spectroscopy, confirming their ability to absorb and convert light energy into heat. Preliminary antibacterial tests were conducted on bacterial biofilms using three experimental protocols, varying the suspension volume and irradiation power. Bacterial viability was assessed immediately after treatment (T0) and after 24 hours (T24) through MTT viability assays. The results indicated that the most effective condition for bacterial reduction was achieved with a suspension volume of 100 µL and a double irradiation power of 330 mW/cm² for 30 minutes, likely due to the enhanced interaction between the nanoparticles and laser energy in a confined liquid environment. However, comparisons with higher power protocols (e.g., 400 mW) highlighted the importance of balancing photothermal efficiency with potential risks such as overheating and cellular stress. These findings suggest that while PBNP-mediated photothermal therapy is a promising strategy, further optimizations are necessary to enhance its long-term antibacterial efficacy and prevent biofilm regrowth. The tested power settings were selected in accordance with biomedical safety standards, ensuring effective antibacterial action while minimizing the risk of thermal damage to surrounding tissues. In conclusion, the photothermal activation of PBNPs has demonstrated significant potential in combating bacterial biofilms. However, further studies are required to optimize its effectiveness and prevent infection recurrence over time.File | Dimensione | Formato | |
---|---|---|---|
Tesi magistrale - Luisa Anna Spadavecchia-2.pdf
non disponibili
Dimensione
5.26 MB
Formato
Adobe PDF
|
5.26 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/28743