SARS-CoV-2, the causative agent of the global COVID-19 pandemic, alters host cellular pathways, leading to pathologies such as ARDS, systemic inflammation, and neurodegeneration. The virus inhibits host protein synthesis through the non-structural protein NSP1, which blocks the translation of host mRNAs while selectively allowing the translation of viral mRNAs. This results in cellular stress, which can induce the formation of stress granules (SGs), dynamic organelles involved in the stress response. SGs are important for protecting cells from stress, but their dysregulation is associated with neurodegenerative diseases and cancer. In this study, the relationship between NSP1 expression, SG formation, and DNA damage was investigated. The results show that the wild-type NSP1 protein significantly increases SG formation and induces DNA damage, as evidenced by increased γH2AX levels and DNA fragmentation. In contrast, the NSP1 ΔRB mutant has a less pronounced effect. This study suggests that NSP1 may cause genotoxic stress and contribute to cellular dysfunction, which could underlie the long-term symptoms of COVID-19, including neurological disorders. Furthermore, the Omicron variant was examined, showing that a point mutation in the Omicron NSP1 protein increases its aggressiveness, leading to enhanced SG formation and elevated genotoxicity. This study provides insights into the molecular mechanisms of SARS-CoV-2 and its implications for COVID-19 pathophysiology.
Il SARS-CoV-2, responsabile della pandemia globale di COVID-19, altera le vie cellulari dell'ospite, causando patologie come ARDS, infiammazione sistemica e neurodegenerazione. Il virus inibisce la sintesi proteica dell'ospite attraverso la proteina non strutturale NSP1, che blocca la traduzione degli mRNA dell'ospite, permettendo però la traduzione selettiva degli mRNA virali. Questo porta a stress cellulare, che può indurre la formazione di granuli da stress (SG), organelli dinamici coinvolti nella risposta allo stress. I SG sono importanti per proteggere le cellule dallo stress, ma la loro disfunzione è associata a malattie neurodegenerative e tumori. In questo studio, si è esaminata la relazione tra l'espressione di NSP1, la formazione di SG e i danni al DNA. I risultati mostrano che la proteina wild-type NSP1 aumenta significativamente la formazione di SG e induce danni al DNA, come evidenziato da un aumento dei livelli di γH2AX e dalla frammentazione del DNA. Al contrario, il mutante NSP1 ΔRB ha un effetto meno pronunciato. Questo studio suggerisce che NSP1 possa causare stress genotossico e contribuire a disfunzioni cellulari, che potrebbero essere alla base dei sintomi a lungo termine di COVID-19, comprese le patologie neurologiche. Inoltre, è stata esaminata la variante Omicron, mostrando che una mutazione puntiforme nella proteina NSP1 della variante Omicron aumenta l'aggressività, portando a una maggiore formazione di SG e a una maggiore genotossicità. Questo studio fornisce informazioni sui meccanismi molecolari del SARS-CoV-2 e le sue implicazioni per la patofisiologia del COVID-19.
Ruolo della proteina NSP1 del SARS-CoV-2 nella formazione di granuli da stress e l'accumulo di danno al DNA
PEIRANO, VIRGINIA
2023/2024
Abstract
SARS-CoV-2, the causative agent of the global COVID-19 pandemic, alters host cellular pathways, leading to pathologies such as ARDS, systemic inflammation, and neurodegeneration. The virus inhibits host protein synthesis through the non-structural protein NSP1, which blocks the translation of host mRNAs while selectively allowing the translation of viral mRNAs. This results in cellular stress, which can induce the formation of stress granules (SGs), dynamic organelles involved in the stress response. SGs are important for protecting cells from stress, but their dysregulation is associated with neurodegenerative diseases and cancer. In this study, the relationship between NSP1 expression, SG formation, and DNA damage was investigated. The results show that the wild-type NSP1 protein significantly increases SG formation and induces DNA damage, as evidenced by increased γH2AX levels and DNA fragmentation. In contrast, the NSP1 ΔRB mutant has a less pronounced effect. This study suggests that NSP1 may cause genotoxic stress and contribute to cellular dysfunction, which could underlie the long-term symptoms of COVID-19, including neurological disorders. Furthermore, the Omicron variant was examined, showing that a point mutation in the Omicron NSP1 protein increases its aggressiveness, leading to enhanced SG formation and elevated genotoxicity. This study provides insights into the molecular mechanisms of SARS-CoV-2 and its implications for COVID-19 pathophysiology.File | Dimensione | Formato | |
---|---|---|---|
TESI Virginia Peirano .pdf
accesso aperto
Dimensione
5.88 MB
Formato
Adobe PDF
|
5.88 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/29169