This thesis aims to investigate the nature, distribution, and spectroscopic properties of hollows located within four craters on Mercury: Warhol, Hopper, Eminescu, and Sander. Hollows represent one of the most distinctive morphological expressions of surface volatilization on the planet. They are characterized by shallow, rimless depressions with high reflectance (typically associated with a peculiar cyan color) and a lack of superposed cratering, suggesting a geologically recent formation. Through the integration of high-resolution geomorphological mapping (using QGIS and the Mappy plugin) and multispectral spectroscopic analysis (ENVI), hollow fields, hollow clusters, and isolated hollows were classified and analyzed, correlating them with surrounding stratigraphic and morphological units. The data were acquired from the Mercury Dual Imaging System (MDIS) onboard NASA’s MESSENGER mission, using NAC/WAC mosaics and multispectral images (430–1000 nm). Spectroscopic analyses revealed recurring diagnostic features between 630–750 nm and a spectral curvature toward 900–1000 nm, consistent with the presence of Mg and Ca sulfides (MgS, CaS), and potentially graphite—indicative of devolatilization processes in highly reduced crustal materials. Additionally, in Eminescu crater, a putative absorption band at 830 nm was identified, often coupled with another at 500 nm, which may indicate locally more oxidizing conditions during the degassing processes that formed the hollows, as these spectral features are most compatible with certain iron oxides. The results show coherent spectral signatures across the investigated sites, although local variations (between different quadrangles) are evident, likely caused by contamination from adjacent materials, lithological heterogeneity, and varying degrees of degradation. The interpretation suggests that, while all three previously proposed formation mechanisms remain plausible, in cases where hollow clusters develop on smooth, re-filled crater floors, the formation hypotheses involving tectonic, impact-related, and contact metamorphism processes are most favored. These processes, as supported by our findings, are expected to produce spectral features confined within the hollows themselves rather than in the surrounding halo, and the spectral signature may be influenced both by the original rock-forming mineralogy and by alterations caused by the volatile elements responsible for hollow formation.
Questa tesi mira ad indagare la natura, distribuzione e proprità spettroscopiche degli hollows presenti all’interno di quattro crateri di Mercurio: Warhol, Hopper, Eminescu e Sander. Gli hollows rappresentano una delle più peculiari espressioni morfologiche di volatilizzazione superficiale del pianeta, caratterizzati da depressioni poco profonde, privi di bordo, ad alta riflettanza (associati ad un peculiare colore ciano) e senza craterizzazione sovrapposta, che suggerisce una formazione geologicamente recente. Attraverso l’integrazione di mappatura geomorfologica ad alta risoluzione (QGIS e Mappy plugin) e analisi spettroscopica multibanda (ENVI), si sono classificati e analizzati hollow fields, hollow clusters e isolated hollows, correlandoli con le unità stratigrafiche e morfologiche circostanti. I dati provengono dal Mercury Dual Imaging System (MDIS) a bordo della missione NASA MESSENGER, utilizzando mosaici NAC/WAC e immagini multibanda (430-100 nm). Le analisi spettroscopiche hanno evidenziato tratti diagnostici ricorrenti tra 630-750 nm e una curvatura spettrale verso 900-1000 nm, coerenti con la presenza di solfuri di Mg e Ca (MgS, CaS), e potenzialmente grafite, in linea con processi di devolatilizzazione di materiali crostali altamente ridotti. Inoltre, in Eminescu, è stata identificata anche la presenza di una presunta banda di assorbimento a 830 nm, spesso accompagnata da un’altra a 500 nm, che potrebbe indicare condizioni localmente più ossidanti durante i processi di degassamento che hanno formato gli hollows, dato che le identificazioni più compatibili sono alcuni ossidi di ferro. I risultati mostrano firme spettrali coerenti tra i diversi siti, pur evidenziando variazioni locali (distinte tra i diversi quadrangoli) dovute a contaminazione da materiali adiacenti, eterogeneità litologica e differente stato di degradazione. L’interpretazione dei dati suggerisce che, sebbene i tre meccanismi di formazione finora proposti siano tutti validi, almeno nei casi in cui gli hollow clusters si sviluppano su un terreno ricoperto da depositi lisci e rifusi, le ipotesi di formazione legate a processi tettonici, da impatto e al metamorfismo da contatto risultano essere le più plausibili. Da questi fenomeni ci si può infatti aspettare, come sembrano indicare i nostri risultati, che le caratteristiche peculiari degli hollows siano concentrate all’interno delle cavità stesse e non nella zona circostante, e che la firma spettrale possa essere influenzata dalla mineralogia originaria della roccia che dalle alterazioni indotte dagli elementi volatili responsabili della formazione degli hollows.
Hollows in Warhol, Hopper, Eminescu and Sander craters: a comparison of extended Hollow fields on crater floors
CARMINATI, FEDERICO
2024/2025
Abstract
This thesis aims to investigate the nature, distribution, and spectroscopic properties of hollows located within four craters on Mercury: Warhol, Hopper, Eminescu, and Sander. Hollows represent one of the most distinctive morphological expressions of surface volatilization on the planet. They are characterized by shallow, rimless depressions with high reflectance (typically associated with a peculiar cyan color) and a lack of superposed cratering, suggesting a geologically recent formation. Through the integration of high-resolution geomorphological mapping (using QGIS and the Mappy plugin) and multispectral spectroscopic analysis (ENVI), hollow fields, hollow clusters, and isolated hollows were classified and analyzed, correlating them with surrounding stratigraphic and morphological units. The data were acquired from the Mercury Dual Imaging System (MDIS) onboard NASA’s MESSENGER mission, using NAC/WAC mosaics and multispectral images (430–1000 nm). Spectroscopic analyses revealed recurring diagnostic features between 630–750 nm and a spectral curvature toward 900–1000 nm, consistent with the presence of Mg and Ca sulfides (MgS, CaS), and potentially graphite—indicative of devolatilization processes in highly reduced crustal materials. Additionally, in Eminescu crater, a putative absorption band at 830 nm was identified, often coupled with another at 500 nm, which may indicate locally more oxidizing conditions during the degassing processes that formed the hollows, as these spectral features are most compatible with certain iron oxides. The results show coherent spectral signatures across the investigated sites, although local variations (between different quadrangles) are evident, likely caused by contamination from adjacent materials, lithological heterogeneity, and varying degrees of degradation. The interpretation suggests that, while all three previously proposed formation mechanisms remain plausible, in cases where hollow clusters develop on smooth, re-filled crater floors, the formation hypotheses involving tectonic, impact-related, and contact metamorphism processes are most favored. These processes, as supported by our findings, are expected to produce spectral features confined within the hollows themselves rather than in the surrounding halo, and the spectral signature may be influenced both by the original rock-forming mineralogy and by alterations caused by the volatile elements responsible for hollow formation.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Magistrale_Carminati_Federico.pdf
embargo fino al 25/07/2026
Dimensione
8.8 MB
Formato
Adobe PDF
|
8.8 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/29841