Cellular aging in cardiomyocytes represents a complex and multifactorial process, recognized as one of the risk factors for the development of cardiovascular diseases in industrialized countries. Although cellular senescence is the subject of growing scientific interest, many of the molecular mechanisms underlying this phenomenon remain poorly understood. Understanding them is crucial for identifying new therapeutic targets and developing innovative strategies for prevention and treatment. In this study, we investigated the cellular and molecular mechanisms underlying cardiac senescence using cardiomyocytes derived from induced pluripotent stem cells (iPSCs) obtained from a patient affected by Hutchinson-Gilford Progeria Syndrome (HGPS). HGPS is a rare genetic disorder characterized by accelerated aging, which in our research represented an ideal model for the study of senescence, as it reproduces within a short timeframe many features of physiological aging. The mutation in the lamin A (LMNA) gene, responsible for the disease, leads to the abnormal production of progerin—an aberrant and dysfunctional form of lamin A—which compromises the structure of the cell nucleus and triggers a cascade of degenerative events affecting the cardiovascular system, the main cause of death in affected patients. Induced cardiomyocytes (iCMs) generated from the HGPS patient were compared with isogenic counterparts genetically corrected through the CRISPR-Cas9 technique. This allowed a direct comparison between senescent cardiomyocytes (HGPS-iCMs) and healthy isogenic controls (IsoiCMs), generating a controlled experimental system and thereby minimizing confounding factors linked to genetic background. Moreover, this approach enabled a detailed analysis and the isolation of structural and functional defects in cardiomyocytes undergoing premature senescence due to the disease. Through multiple advanced techniques, including immunofluorescence, western blotting, RT-PCR, electron microscopy, and metabolic analyses using the Seahorse XF test, we were able to better characterize the various manifestations of the senescent phenotype, including alterations in nuclear morphology, progerin accumulation, increased expression of senescence markers (p16, p21, p53, SA-β-gal), activation of the DNA damage response (γH2AX), mitochondrial dysfunction, and increased oxidative stress, particularly under doxorubicin stimulation. An important aspect of this work was the differentiation process, which allowed us to obtain mature cardiomyocytes from iPSCs through a carefully optimized protocol of cell culture and specific growth conditions. This subsequently enabled the separate analysis of atrial and ventricular cardiomyocyte subtypes, highlighting distinct differences in susceptibility to senescence and oxidative stress. These findings suggest that different cardiac phenotypes may respond differently to aging. The results obtained led to the identification of specific phenotypic alterations involving mitochondrial turnover, which may represent a future therapeutic target aimed at reducing the impact of senescence in cardiac diseases. This work fits within the context of translational research, with the goal of contributing to a deeper understanding of the mechanisms of cardiac senescence. Furthermore, the innovative approach that combines HGPS as a model of premature aging with the use of iPSCs as an experimental platform opens new perspectives for studying senescent processes and developing potential therapeutic strategies. These strategies could improve cardiovascular health in the aging population, with potentially significant implications for regenerative medicine and the development of targeted anti-senescence therapies.
L’invecchiamento cellulare nei cardiomiociti rappresenta un processo complesso e multifattoriale, riconosciuto come uno dei fattori di rischio per lo sviluppo di patologie cardiovascolari nei paesi industrializzati. Sebbene la senescenza cellulare sia oggetto di crescente interesse scientifico, molti dei meccanismi molecolari alla base di questo fenomeno rimangono ancora poco chiari. Comprenderli è fondamentale per identificare nuovi target terapeutici e sviluppare strategie innovative di prevenzione e cura. In questo studio, abbiamo indagato i meccanismi cellulari e molecolari alla base della senescenza cardiaca utilizzando cardiomiociti derivati da cellule staminali pluripotenti indotte (iPSCs) ottenute da un paziente affetto da sindrome progeroide di Hutchinson-Gilford (HGPS). La HGPS è una rara malattia genetica caratterizzata da invecchiamento accelerato, che ha rappresentato nella nostra ricerca un modello ideale per lo studio della senescenza, in quanto riproduce in tempi brevi numerose caratteristiche dell’invecchiamento fisiologico. La mutazione del gene lamina A (LMNA), responsabile della malattia, porta alla produzione anomala di progerina una forma aberrante e disfunzionale della proteina lamina A, che compromette la struttura del nucleo cellulare e innesca una cascata di eventi degenerativi a carico del sistema cardiovascolare, principale causa di morte nei pazienti affetti. I cardiomiociti indotti (iCMs) generati dal paziente con HGPS sono stati messi a confronto con controparti isogeniche, geneticamente corrette tramite l’applicazione della tecnica CRISPR-Cas9. Questo ha permesso un confronto diretto tra cardiomiociti senescenti (HGPS-iCMs) e controlli isogenici sani (IsoiCMs), generando un sistema sperimentale controllato e riducendo così al minimo i fattori confondenti legati al background genetico. Inoltre, ci ha permesso di eseguire un’analisi dettagliata con la possibilità di isolare i difetti strutturali e funzionali delle cellule cardiache affette da senescenza precoce data dalla malattia. Attraverso molteplici tecniche avanzate, tra cui immunofluorescenza, western blot, RT-PCR, microscopia elettronica e analisi metaboliche con il test seahorse XF, abbiamo potuto meglio analizzare le diverse espressioni del fenotipo senescente tra cui: la alterazioni della morfologia nucleare, l’accumulo di progerina, l’aumento dei marcatori di senescenza (p16, p21, p53, SA-β-gal), l’attivazione della risposta al danno al DNA (γH2AX), la disfunzione mitocondriale e l’aumento dello stress ossidativo, in particolare sotto stimolo con doxorubicina. Un aspetto importante del lavoro è stato il processo di differenziazione, che ci ha permesso di ottenere cardiomiociti maturi a partire da iPSC, attraverso un accurato protocollo di colture cellulari e condizioni specifiche di crescita. Questo ha consentito successivamente l’analisi separata dei sottotipi atriale e ventricolare dei cardiomiociti differenziati, che ci ha permesso di evidenziare differenze specifiche nella suscettibilità alla senescenza e allo stress ossidativo, suggerendo che i diversi fenotipi cardiaci possono rispondere in modo distinto all’invecchiamento. I risultati ottenuti ci hanno permesso l’identificazione di alterazioni fenotipiche specifiche che coinvolgono il turnover mitocondriale e che possono rappresentare un target terapeutico in futuro nel tentativo di ridurre l’impatto della senescenza nelle patologie cardiache. Questo lavoro si inserisce nel contesto di ricerca traslazionale, con l’obiettivo di contribuire ad ampliare le conoscenze sui meccanismi della senescenza cardiaca. Inoltre, l’approccio innovativo che combina la HGPS come modello di invecchiamento precoce e l’utilizzo di iPSCs come piattaforma sperimentale, apre nuove prospettive per lo studio dei processi senescenti e delle potenziali strategie terapeutiche, volte a migliorare la salute cardiovascolare della popolazione anziana.
Modello cellulare di disfunzione cardiaca nella sindrome progeroide di Hutchinson-Gilford utilizzando cardiomiociti derivati da cellule iPSCs
GJERGJI, CRISTI
2024/2025
Abstract
Cellular aging in cardiomyocytes represents a complex and multifactorial process, recognized as one of the risk factors for the development of cardiovascular diseases in industrialized countries. Although cellular senescence is the subject of growing scientific interest, many of the molecular mechanisms underlying this phenomenon remain poorly understood. Understanding them is crucial for identifying new therapeutic targets and developing innovative strategies for prevention and treatment. In this study, we investigated the cellular and molecular mechanisms underlying cardiac senescence using cardiomyocytes derived from induced pluripotent stem cells (iPSCs) obtained from a patient affected by Hutchinson-Gilford Progeria Syndrome (HGPS). HGPS is a rare genetic disorder characterized by accelerated aging, which in our research represented an ideal model for the study of senescence, as it reproduces within a short timeframe many features of physiological aging. The mutation in the lamin A (LMNA) gene, responsible for the disease, leads to the abnormal production of progerin—an aberrant and dysfunctional form of lamin A—which compromises the structure of the cell nucleus and triggers a cascade of degenerative events affecting the cardiovascular system, the main cause of death in affected patients. Induced cardiomyocytes (iCMs) generated from the HGPS patient were compared with isogenic counterparts genetically corrected through the CRISPR-Cas9 technique. This allowed a direct comparison between senescent cardiomyocytes (HGPS-iCMs) and healthy isogenic controls (IsoiCMs), generating a controlled experimental system and thereby minimizing confounding factors linked to genetic background. Moreover, this approach enabled a detailed analysis and the isolation of structural and functional defects in cardiomyocytes undergoing premature senescence due to the disease. Through multiple advanced techniques, including immunofluorescence, western blotting, RT-PCR, electron microscopy, and metabolic analyses using the Seahorse XF test, we were able to better characterize the various manifestations of the senescent phenotype, including alterations in nuclear morphology, progerin accumulation, increased expression of senescence markers (p16, p21, p53, SA-β-gal), activation of the DNA damage response (γH2AX), mitochondrial dysfunction, and increased oxidative stress, particularly under doxorubicin stimulation. An important aspect of this work was the differentiation process, which allowed us to obtain mature cardiomyocytes from iPSCs through a carefully optimized protocol of cell culture and specific growth conditions. This subsequently enabled the separate analysis of atrial and ventricular cardiomyocyte subtypes, highlighting distinct differences in susceptibility to senescence and oxidative stress. These findings suggest that different cardiac phenotypes may respond differently to aging. The results obtained led to the identification of specific phenotypic alterations involving mitochondrial turnover, which may represent a future therapeutic target aimed at reducing the impact of senescence in cardiac diseases. This work fits within the context of translational research, with the goal of contributing to a deeper understanding of the mechanisms of cardiac senescence. Furthermore, the innovative approach that combines HGPS as a model of premature aging with the use of iPSCs as an experimental platform opens new perspectives for studying senescent processes and developing potential therapeutic strategies. These strategies could improve cardiovascular health in the aging population, with potentially significant implications for regenerative medicine and the development of targeted anti-senescence therapies.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_pdfA.pdf
non disponibili
Descrizione: The aim of the present thesis is to address these gaps by investigating the molecular and cellular mechanisms that regulate cardiac cellular senescence, using Hutchinson-Gilford progeria syndrome (HGPS) cardiomyocytes derived from induced pluripotent stem
Dimensione
3.37 MB
Formato
Adobe PDF
|
3.37 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/30608