This master’s thesis is situated within the field of mathematics education and documents the distinct stages of a teaching experiment conducted in a third-year high school class, aimed at introducing the ellipse. The main objective was to design a teaching sequence entirely from scratch, implement it in the classroom, and systematically analyze its findings, with particular attention to the cognitive and semiotic processes activated by the students. The project was developed within the theoretical framework of the Theory of Semiotic Mediation by Bartolini Bussi and Mariotti (2009), chosen both for its methodological completeness, which allows for guiding the design and analysis of teaching activities, and for its innovative nature, which highlights the role of artifacts as mediators between the student and Mathematical Knowledge. In this context, particular importance was given to the use of two distinct types of artifacts: a material artifact, employed in the initial stages of the teaching-learning pathway, and a digital artifact, namely the dynamic geometry software GeoGebra. The combined use of these artifacts made it possible to observe both the specific contribution of each to learning and the ways in which their interaction supported the construction of mathematical meanings. The research questions addressed central aspects of the theory, such as the role of artifacts in the teaching-learning process of mathematics, the evolution of situated signs produced by students towards shared mathematical signs, the mediating and guiding role of the teacher during mathematical discussions, and the coherence between the design and the actual implementation of the pathway. The experiment was structured over three sessions, with three main objectives: guiding students to the discovery of the characteristic property of the ellipse and its definition in the Euclidean plane, reformulating this definition in the Cartesian context, and finally developing the procedure to obtain the canonical equation of the ellipse with foci on the x-axis, symmetric with respect to the origin. The findings confirmed the effectiveness of the theoretical perspective adopted in this study, showing how the interaction between different artifacts, the teacher’s guidance and peer collaboration can function as powerful tools to support the construction of mathematical concepts. Moreover, the experiment brought to light some student difficulties, particularly concerning the understanding and formulation of the definition of the ellipse and, subsequently, the transition from the Euclidean to the Cartesian framework. These critical aspects allowed for an in-depth analysis, the development of improvements to the activities within the teaching pathway, and, more broadly, reflections on potential didactic implications. This study demonstrates the potential of the Theory of Semiotic Mediation not only as a tool for analyzing cognitive processes but also as a guide for designing and implementing innovative educational pathways, thereby contributing to the improvement of mathematics teaching practices in the classroom.
Il presente lavoro di tesi si colloca nell’ambito della didattica della matematica e documenta le diverse fasi di una sperimentazione condotta in una classe terza di scuola secondaria di II grado, finalizzata all’introduzione dell’ellisse. L’obiettivo principale del lavoro è stato progettare ex novo un percorso didattico, attuarlo concretamente in classe e analizzarne sistematicamente i risultati, con particolare attenzione ai processi cognitivi e semiotici messi in atto dagli studenti. Il progetto è stato sviluppato adottando come quadro teorico la Teoria della Mediazione Semiotica di Bartolini Bussi e Mariotti (2009), scelta sia per la sua completezza metodologica, che consente di guidare la progettazione e l’analisi dei percorsi didattici, sia per il suo carattere innovativo, che valorizza il ruolo degli artefatti come mediatori tra lo studente e il Sapere Matematico. In questo contesto, particolare rilievo ha assunto l’impiego di due artefatti di natura differente: un artefatto materiale, utilizzato nelle prime fasi del percorso, e un artefatto digitale, ovvero il software di geometria dinamica GeoGebra. L’uso combinato di questi artefatti ha permesso di osservare sia il contributo specifico di ciascuno all’apprendimento, sia le modalità di interazione tra essi nel favorire la costruzione dei significati matematici. Le domande di ricerca hanno approfondito aspetti centrali della teoria, quali il ruolo degli artefatti nel processo di insegnamento-apprendimento della matematica, l’evoluzione dei segni situati prodotti dagli studenti verso segni matematici condivisi, il ruolo di mediatore e guida dell’insegnante durante le discussioni matematiche, la coerenza tra progettazione e realizzazione del percorso. La sperimentazione si è articolata in tre giornate, con tre obiettivi principali: guidare gli studenti alla scoperta della proprietà caratteristica dell’ellisse e della sua definizione in ambito euclideo, riformulare tale definizione nel contesto cartesiano e sviluppare infine la procedura per ottenere l’equazione canonica dell’ellisse con fuochi sull’asse x, simmetrici rispetto all’origine. I risultati ottenuti hanno confermato l’efficacia della prospettiva teorica adottata, evidenziando come l’interazione tra artefatti differenti, la guida dell’insegnante e la collaborazione tra pari costituiscano strumenti potenti per favorire la costruzione dei concetti matematici. La sperimentazione ha inoltre permesso l’emergere di alcune difficoltà degli studenti, specialmente relative alla comprensione e formulazione della definizione di ellisse e, successivamente, al passaggio dal riferimento euclideo a quello cartesiano; criticità che hanno consentito un’approfondita analisi, lo sviluppo di eventuali miglioramenti delle attività del percorso e, più in generale, di possibili implicazioni didattiche. Questo lavoro dimostra il potenziale della Teoria della Mediazione Semiotica non solo come strumento di analisi dei processi cognitivi, ma anche come guida per progettare e realizzare percorsi didattici innovativi, contribuendo al miglioramento delle pratiche di insegnamento della matematica in aula.
La Teoria della Mediazione Semiotica come strumento di progettazione e analisi: percorso didattico sull'ellisse tra artefatti materiali e digitali
ALLONI, GIULIA
2024/2025
Abstract
This master’s thesis is situated within the field of mathematics education and documents the distinct stages of a teaching experiment conducted in a third-year high school class, aimed at introducing the ellipse. The main objective was to design a teaching sequence entirely from scratch, implement it in the classroom, and systematically analyze its findings, with particular attention to the cognitive and semiotic processes activated by the students. The project was developed within the theoretical framework of the Theory of Semiotic Mediation by Bartolini Bussi and Mariotti (2009), chosen both for its methodological completeness, which allows for guiding the design and analysis of teaching activities, and for its innovative nature, which highlights the role of artifacts as mediators between the student and Mathematical Knowledge. In this context, particular importance was given to the use of two distinct types of artifacts: a material artifact, employed in the initial stages of the teaching-learning pathway, and a digital artifact, namely the dynamic geometry software GeoGebra. The combined use of these artifacts made it possible to observe both the specific contribution of each to learning and the ways in which their interaction supported the construction of mathematical meanings. The research questions addressed central aspects of the theory, such as the role of artifacts in the teaching-learning process of mathematics, the evolution of situated signs produced by students towards shared mathematical signs, the mediating and guiding role of the teacher during mathematical discussions, and the coherence between the design and the actual implementation of the pathway. The experiment was structured over three sessions, with three main objectives: guiding students to the discovery of the characteristic property of the ellipse and its definition in the Euclidean plane, reformulating this definition in the Cartesian context, and finally developing the procedure to obtain the canonical equation of the ellipse with foci on the x-axis, symmetric with respect to the origin. The findings confirmed the effectiveness of the theoretical perspective adopted in this study, showing how the interaction between different artifacts, the teacher’s guidance and peer collaboration can function as powerful tools to support the construction of mathematical concepts. Moreover, the experiment brought to light some student difficulties, particularly concerning the understanding and formulation of the definition of the ellipse and, subsequently, the transition from the Euclidean to the Cartesian framework. These critical aspects allowed for an in-depth analysis, the development of improvements to the activities within the teaching pathway, and, more broadly, reflections on potential didactic implications. This study demonstrates the potential of the Theory of Semiotic Mediation not only as a tool for analyzing cognitive processes but also as a guide for designing and implementing innovative educational pathways, thereby contributing to the improvement of mathematics teaching practices in the classroom.| File | Dimensione | Formato | |
|---|---|---|---|
|
ALLONI GIULIA TESI.pdf
accesso aperto
Descrizione: Tesi definitiva - Alloni Giulia
Dimensione
40.44 MB
Formato
Adobe PDF
|
40.44 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/30768