Tendon injuries are now a major globally health concern that impact millions of people each year. Because of the high expense of surgeries, rehabilitation, and infiltrations, tendon injuries consequently place a substantial clinical weight on health systems. Because of the tissue's poor healing ability, which frequently results in re-rupture or incapacitating deficits, surgeons still find it challenging to replace tendon defects caused by trauma or intrinsic tissue degeneration in the clinic. The use of tissue engineering techniques for the treatment of orthopaedic injuries, with the goal of regenerating the injured tissues, has been made possible by significant scientific advancements in recent years in areas like materials engineering and bio- and physico-chemistry. Actually, a promising method for treating tendon injuries is the creation of tissue-engineered bio-mimetic scaffolds that can promote the adhesion, differentiation, and proliferation of the host cells. Nanofibrous scaffolds based on PCL doped with Fe3O4 MNPs were successfully manufactured with an electrospinning apparatus. It was possible to develop fibers in aligned conformation able to mimic the tendon fascicles and the Fe3O4 MNPs were successfully embedded into the fibrous matrix, leading to a slight decrease of the scaffolds maximum force at break. The scaffolds were characterized by a homogeneous internal distribution of Fe3O4 MNPs, which could allow a uniform external magnetic stimulation of the fibers. Moreover, the weight loss test performed for 6 weeks suggested a slow degradation rate that should guarantee a structural support during the entire tissue regeneration. Furthermore, the scaffolds maintained their morphology and mechanical properties for the entire degradation test, and the Fe3O4 MNPs were visible and well embedded into the matrix after 6 weeks, suggesting that the scaffold would be able to magnetically stimulate the tissue for the entire regeneration period. Finally, it was possible to investigate the effect of static magnetic fields of different extent on TEN-F cells behavior when combined to the scaffolds. These findings should contribute to the understanding of the mechanisms of external magnetic mechanostimulation. The scaffolds enriched with Fe3O4 MNPs (P4Fe-A) promoted the cell proliferation in vitro, in particular when combined with the application of the external magnetic fields of 155 and 285 mT. Moreover, the application of the magnetic field onto P4Fe-A scaffold also led to a significant increase in the cell adhesion and alignment onto the matrix, demonstrating the effectiveness of the treatment onto TEN-F cells. In conclusion, although other studies need to be carried out to demonstrate the in vivo effectiveness of the developed scaffolds, P4Fe-A represent a promising tool to enhance tendon tissue regeneration by allowing a deeper tissue regeneration, when combined with an external magnetic field.
Le lesioni tendinee rappresentano oggi un importante problema sanitario a livello globale, che colpisce milioni di persone ogni anno. A causa degli elevati costi di interventi chirurgici, riabilitazione e infiltrazioni, le lesioni tendinee rappresentano un notevole peso clinico per i sistemi sanitari. A causa della scarsa capacità di guarigione del tessuto, che spesso si traduce in una nuova rottura o deficit invalidanti, i chirurghi trovano ancora difficile sostituire i difetti tendinei causati da traumi o degenerazione tissutale intrinseca in ambito clinico. L'uso di tecniche di ingegneria tissutale per il trattamento delle lesioni ortopediche, con l'obiettivo di rigenerare i tessuti lesionati, è stato reso possibile da significativi progressi scientifici degli ultimi anni in settori come l'ingegneria dei materiali e la biochimica e la chimica fisica. In realtà, un metodo promettente per il trattamento delle lesioni tendinee è la creazione di scaffold biomimetici ingegnerizzati in grado di promuovere l'adesione, la differenziazione e la proliferazione delle cellule ospiti. Scaffold nanofibrosi basati su PCL drogato con MNP Fe3O4 sono stati realizzati con successo con un apparecchio per elettrofilatura. È stato possibile sviluppare fibre in conformazione allineata in grado di imitare i fasci tendinei e le MNP di Fe3O4 sono state incorporate con successo nella matrice fibrosa, determinando una leggera diminuzione della forza massima a rottura degli scaffold. Gli scaffold erano caratterizzati da una distribuzione interna omogenea di MNP di Fe3O4, che poteva consentire una stimolazione magnetica esterna uniforme delle fibre. Inoltre, il test di perdita di peso eseguito per 6 settimane ha suggerito una lenta velocità di degradazione che dovrebbe garantire un supporto strutturale durante l'intero periodo di rigenerazione tissutale. Inoltre, gli scaffold hanno mantenuto la loro morfologia e le proprietà meccaniche per l'intero test di degradazione e le MNP di Fe3O4 erano visibili e ben incorporate nella matrice dopo 6 settimane, suggerendo che lo scaffold sarebbe stato in grado di stimolare magneticamente il tessuto per l'intero periodo di rigenerazione. Infine, è stato possibile studiare l'effetto di campi magnetici statici di diversa intensità sul comportamento delle cellule TEN-F quando combinate con gli scaffold. Questi risultati dovrebbero contribuire alla comprensione dei meccanismi della meccanostimolazione magnetica esterna. Gli scaffold arricchiti con MNP Fe3O4 (P4Fe-A) hanno promosso la proliferazione cellulare in vitro, in particolare se combinati con l'applicazione di campi magnetici esterni di 155 e 285 mT. Inoltre, l'applicazione del campo magnetico sullo scaffold P4Fe-A ha portato anche a un aumento significativo dell'adesione cellulare e dell'allineamento sulla matrice, dimostrando l'efficacia del trattamento sulle cellule TEN-F. In conclusione, sebbene siano necessari altri studi per dimostrare l'efficacia in vivo degli scaffold sviluppati, il P4Fe-A rappresenta uno strumento promettente per migliorare la rigenerazione del tessuto tendineo, consentendo una rigenerazione tissutale più profonda, se combinato con un campo magnetico esterno.
Sviluppo di scaffolds magnetici per la rigenerazione del tessuto tendineo
DI BIASE, ARIANNA
2024/2025
Abstract
Tendon injuries are now a major globally health concern that impact millions of people each year. Because of the high expense of surgeries, rehabilitation, and infiltrations, tendon injuries consequently place a substantial clinical weight on health systems. Because of the tissue's poor healing ability, which frequently results in re-rupture or incapacitating deficits, surgeons still find it challenging to replace tendon defects caused by trauma or intrinsic tissue degeneration in the clinic. The use of tissue engineering techniques for the treatment of orthopaedic injuries, with the goal of regenerating the injured tissues, has been made possible by significant scientific advancements in recent years in areas like materials engineering and bio- and physico-chemistry. Actually, a promising method for treating tendon injuries is the creation of tissue-engineered bio-mimetic scaffolds that can promote the adhesion, differentiation, and proliferation of the host cells. Nanofibrous scaffolds based on PCL doped with Fe3O4 MNPs were successfully manufactured with an electrospinning apparatus. It was possible to develop fibers in aligned conformation able to mimic the tendon fascicles and the Fe3O4 MNPs were successfully embedded into the fibrous matrix, leading to a slight decrease of the scaffolds maximum force at break. The scaffolds were characterized by a homogeneous internal distribution of Fe3O4 MNPs, which could allow a uniform external magnetic stimulation of the fibers. Moreover, the weight loss test performed for 6 weeks suggested a slow degradation rate that should guarantee a structural support during the entire tissue regeneration. Furthermore, the scaffolds maintained their morphology and mechanical properties for the entire degradation test, and the Fe3O4 MNPs were visible and well embedded into the matrix after 6 weeks, suggesting that the scaffold would be able to magnetically stimulate the tissue for the entire regeneration period. Finally, it was possible to investigate the effect of static magnetic fields of different extent on TEN-F cells behavior when combined to the scaffolds. These findings should contribute to the understanding of the mechanisms of external magnetic mechanostimulation. The scaffolds enriched with Fe3O4 MNPs (P4Fe-A) promoted the cell proliferation in vitro, in particular when combined with the application of the external magnetic fields of 155 and 285 mT. Moreover, the application of the magnetic field onto P4Fe-A scaffold also led to a significant increase in the cell adhesion and alignment onto the matrix, demonstrating the effectiveness of the treatment onto TEN-F cells. In conclusion, although other studies need to be carried out to demonstrate the in vivo effectiveness of the developed scaffolds, P4Fe-A represent a promising tool to enhance tendon tissue regeneration by allowing a deeper tissue regeneration, when combined with an external magnetic field.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Arianna final PDF A.pdf
non disponibili
Dimensione
2.86 MB
Formato
Adobe PDF
|
2.86 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31289