Alternative splicing (AS) is involved in immune-mediated diseases, including multiple sclerosis (MS). The aim of this study was to develop and validate a classification model based on AS events to discriminate relapsing-remitting MS (RRMS) patients from healthy controls. Three splicing events were selected: exon 8 skipping in IFNAR2, exon 2 skipping in NFAT5, and aberrant inclusion of a non-canonical exon 3* in PRKCA. Selection was based on functional relevance, literature data, public annotation databases, and experimental validation. Isoforms were quantified by fluorescent-competitive RT-PCR on RNA extracted from peripheral blood samples of two independent cohorts (Italy: 37 RRMS, 50 controls; USA: 29 RRMS, 20 controls). A logistic regression model was built to generate the MS-Splicing Score (MS-SS), evaluated by ROC analysis. The score significantly discriminated patients from controls in both cohorts. In the combined dataset, refinement with principal component analysis (PCA) increased classification accuracy (AUC=0.87, 95% CI=0.81–0.94), with 80% sensitivity and 86% specificity at the optimal cut-off. A Logic Learning Machine algorithm identified interpretable splicing thresholds and enabled the development of a prototypical clinical algorithm for individual classification. Analysis of AS profiles in a third Italian cohort of CD4+ samples did not show statistically significant results, suggesting the need for further investigations.
Lo splicing alternativo (AS) è coinvolto nelle malattie immunomediate, inclusa la sclerosi multipla (MS). Obiettivo dello studio: sviluppare e validare un modello di classificazione basato su eventi di AS per distinguere pazienti con sclerosi multipla recidivante-remittente (RRMS) da controlli sani. Sono stati selezionati tre eventi di splicing: skipping dell’esone 8 in IFNAR2, skipping dell’esone 2 in NFAT5, inclusione aberrante dell’esone 3* in PRKCA. La selezione si è basata su rilevanza funzionale, letteratura, database pubblici e validazione sperimentale. Le isoforme sono state quantificate con PCR fluorescente-competitiva su RNA da sangue periferico di due coorti indipendenti (Italia: 37 RRMS, 50 controlli; USA: 29 RRMS, 20 controlli). Un modello di regressione logistica ha generato il MS-Splicing Score (MS-SS), valutato tramite analisi ROC. Il punteggio ha discriminato significativamente i pazienti dai controlli in entrambe le coorti. Nei dati combinati, l’affinamento con analisi delle componenti principali (PCA) ha aumentato l’accuratezza (AUC=0.87, 95% CI=0.81–0.94), con sensibilità dell’80% e specificità dell’86% al cut-off ottimale. L’uso di un algoritmo di Logic Learning Machine ha identificato soglie di splicing interpretabili e consentito lo sviluppo di un algoritmo clinico prototipale per la classificazione individuale. Lo studio dei profili di splicing in una terza coorte italiana di campioni CD4+ non ha mostrato risultati statisticamente significativi, suggerendo la necessità di ulteriori approfondimenti.
Definizione di uno score multigenico basato su eventi di splicing alternativo per la diagnosi di sclerosi multipla recidivante-remittente
PELLICANÒ, VALENTINA
2024/2025
Abstract
Alternative splicing (AS) is involved in immune-mediated diseases, including multiple sclerosis (MS). The aim of this study was to develop and validate a classification model based on AS events to discriminate relapsing-remitting MS (RRMS) patients from healthy controls. Three splicing events were selected: exon 8 skipping in IFNAR2, exon 2 skipping in NFAT5, and aberrant inclusion of a non-canonical exon 3* in PRKCA. Selection was based on functional relevance, literature data, public annotation databases, and experimental validation. Isoforms were quantified by fluorescent-competitive RT-PCR on RNA extracted from peripheral blood samples of two independent cohorts (Italy: 37 RRMS, 50 controls; USA: 29 RRMS, 20 controls). A logistic regression model was built to generate the MS-Splicing Score (MS-SS), evaluated by ROC analysis. The score significantly discriminated patients from controls in both cohorts. In the combined dataset, refinement with principal component analysis (PCA) increased classification accuracy (AUC=0.87, 95% CI=0.81–0.94), with 80% sensitivity and 86% specificity at the optimal cut-off. A Logic Learning Machine algorithm identified interpretable splicing thresholds and enabled the development of a prototypical clinical algorithm for individual classification. Analysis of AS profiles in a third Italian cohort of CD4+ samples did not show statistically significant results, suggesting the need for further investigations.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi magistrale Valentina Pellicanò.pdf
accesso aperto
Descrizione: Il presente lavoro di tesi si propone di sviluppare un classificatore diagnostico basato su eventi di splicing alternativo con l’obiettivo di discriminare i pazienti affetti da SM recidivante-remittente.
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31401