Accurate dosimetry represents a fundamental prerequisite for non-conventional radiotherapy modalities such as Boron Neutron Capture Therapy (BNCT) and FLASH radiotherapy, where the presence of mixed neutron–photon fields or ultra-high dose rates challenges the performance of conventional detectors. In this framework, silica-based optical fibers have emerged as promising candidates for real-time and non-invasive dosimetry. This thesis combines computational and experimental approaches to evaluate the feasibility of employing optical fibers as dosimeters in the aforementioned contexts. Monte Carlo simulations were performed using the PHITS code to reproduce the radiation field conditions inside the thermal column of the TRIGA Mark II reactor in Pavia. This allowed a detailed characterization of the neutron and photon dose components expected in silica. Experiments under controlled irradiation conditions were carried out at the PETRA facility of the Hubert Curien Laboratory in Saint-Étienne. Here, Radiation-Induced Luminescence (RIL) measurements were performed on optical fibers doped with cerium (Ce-doped) and on fibers with a medium hydroxyl concentration (M–OH). The former exhibited high intrinsic sensitivity, whereas the latter showed a linear response with negligible afterglow and a sensitivity tunable with fiber length. Radiation-Induced Attenuation (RIA) was investigated in phosphorus doped (P-doped) fibers using OTDR techniques, demonstrating the expected linear dose–response up to several hundred Gy, with good repeatability and spatial resolution suitable for distributed dosimetry. These results confirm the suitability of both techniques for application within the mixed field of the TRIGA reactor thermal column. Furthermore, the study was extended to FLASH radiotherapy. Dedicated pulsed tests showed that M–OH fibers combine fast recovery dynamics with linear signal response, allowing pulse-by-pulse monitoring without overlap, whereas Ce-doped fibers are limited by persistent afterglow. These findings identify M–OH fibers as solid candidates for real-time dosimetry under ultra-high dose-rate conditions. Overall, this thesis highlights the potential of silica optical fibers as versatile dosimeters, from BNCT to FLASH applications. The results derived from the simulations, the experiments and calculations confirm the feasibility of implementing fiber-based dosimetry in the thermal column of the TRIGA reactor. Part of the experimental results were presented at the SiO2 Conference 2025 in Saint-Étienne and are included in a forthcoming publication, underscoring the originality and impact of this work.
Una dosimetria accurata è un requisito fondamentale nelle tecniche di radioterapia non convenzionali, come la Boron Neutron Capture Therapy (BNCT) e la FLASH radiotherapy, in cui la presenza di campi misti neutroni–fotoni o le dosi ultra-elevate mettono alla prova le prestazioni dei rivelatori convenzionali. In questo contesto, le fibre ottiche a base di silice sono emerse come candidati promettenti per una dosimetria in tempo reale e minimamente invasiva. La presente tesi combina approcci computazionali e sperimentali per valutare la fattibilità delle fibre ottiche come dosimetri in tali condizioni. Sono state utilizzate simulazioni Monte Carlo con il codice PHITS per riprodurre le condizioni di irraggiamento della colonna termica del reattore TRIGA Mark II, fornendo una caratterizzazione dettagliata delle componenti di dose da neutroni e fotoni e prevedendo la risposta della fibra alla scala micrometrica. Ciò ha permesso una caratterizzazione dettagliata delle componenti di dose neutroniche e fotoniche attese in silice. Nell’impianto PETRA del Laboratorio Hubert Curien a Saint-Étienne, sono stati effettuati esperimenti in condizioni controllate. Qui, sono state performate misure di Radiation-Induced Luminescence (RIL) con fibre ottiche dopate con cerio (Ce-doped) e su fibre con una media concentrazione di gruppi ossidrilici (M-OH). Le prime hanno mostrato un’elevata sensibilità intrinseca, mentre le seconde una risposta lineare caratterizzata da un afterglow trascurabile e una sensibilità modulabile con la lunghezza della fibra. Invece, lo studio della Radiation Induced Attenuation (RIA) è stato investigato con fibre dopate con il fosforo (P-doped) usando tecniche OTDR, dimostrando l’attesa risposta lineare della dose fino a parecchi Gy, con buona ripetibilità e risoluzione spaziale adatta per dosimetria distribuita. Questi risultati confermano l’idoneità di entrambe le tecniche per l’applicazione nel campo misto della colonna termica del reattore TRIGA. Inoltre, lo studio è stato esteso alla FLASH radiotherapy. Effettuando test pulsati dedicati, è stato possibile mostrare che fibre M-OH combinano una dinamica di recupero rapida con una risposta lineare del segnale, permettendo un monitoraggio impulso per impulso senza sovrapposizioni, mentre le fibre Ce-doped sono limitate da un persistente afterglow. Questi risultati identificano le fibre M-OH come solidi candidati per dosimetria in tempo reale e in condizioni di ultra-high dose-rate. Nel complesso, questa tesi evidenzia il potenziale delle fibre ottiche a base di silice come dosimetri versatili, a partire da applicazioni di BNCT fino alla FLASH. I risultati delle simulazioni, gli esperimenti e i calcoli confermano la fattibilità dell’implementazione di dosimetri a fibre ottiche nella colonna termica del reattore TRIGA. Parte dei risultati sperimentali sono stati presentati alla conferenza SiO2 2025 (Saint-Étienne) e sono inclusi in un articolo in pubblicazione, a conferma dell’originalità e della rilevanza del lavoro svolto.
Experimental and computational optical-fiber based dosimetry for neutron and photon non-conventional radiotherapy
BRECCIA, LETIZIA
2024/2025
Abstract
Accurate dosimetry represents a fundamental prerequisite for non-conventional radiotherapy modalities such as Boron Neutron Capture Therapy (BNCT) and FLASH radiotherapy, where the presence of mixed neutron–photon fields or ultra-high dose rates challenges the performance of conventional detectors. In this framework, silica-based optical fibers have emerged as promising candidates for real-time and non-invasive dosimetry. This thesis combines computational and experimental approaches to evaluate the feasibility of employing optical fibers as dosimeters in the aforementioned contexts. Monte Carlo simulations were performed using the PHITS code to reproduce the radiation field conditions inside the thermal column of the TRIGA Mark II reactor in Pavia. This allowed a detailed characterization of the neutron and photon dose components expected in silica. Experiments under controlled irradiation conditions were carried out at the PETRA facility of the Hubert Curien Laboratory in Saint-Étienne. Here, Radiation-Induced Luminescence (RIL) measurements were performed on optical fibers doped with cerium (Ce-doped) and on fibers with a medium hydroxyl concentration (M–OH). The former exhibited high intrinsic sensitivity, whereas the latter showed a linear response with negligible afterglow and a sensitivity tunable with fiber length. Radiation-Induced Attenuation (RIA) was investigated in phosphorus doped (P-doped) fibers using OTDR techniques, demonstrating the expected linear dose–response up to several hundred Gy, with good repeatability and spatial resolution suitable for distributed dosimetry. These results confirm the suitability of both techniques for application within the mixed field of the TRIGA reactor thermal column. Furthermore, the study was extended to FLASH radiotherapy. Dedicated pulsed tests showed that M–OH fibers combine fast recovery dynamics with linear signal response, allowing pulse-by-pulse monitoring without overlap, whereas Ce-doped fibers are limited by persistent afterglow. These findings identify M–OH fibers as solid candidates for real-time dosimetry under ultra-high dose-rate conditions. Overall, this thesis highlights the potential of silica optical fibers as versatile dosimeters, from BNCT to FLASH applications. The results derived from the simulations, the experiments and calculations confirm the feasibility of implementing fiber-based dosimetry in the thermal column of the TRIGA reactor. Part of the experimental results were presented at the SiO2 Conference 2025 in Saint-Étienne and are included in a forthcoming publication, underscoring the originality and impact of this work.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Letizia_Breccia.pdf
accesso aperto
Dimensione
6.27 MB
Formato
Adobe PDF
|
6.27 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31452