Cancer is one of the greatest health, social, and economic challenges of the 21st century. In 2022, there were about 20 million new cases and 9.7 million deaths, with lung, breast, colorectal, prostate, and stomach cancers most prevalent. The incidence of cancer is expected to increase by 77% between 2022 and 2050, underscoring the urgent need for effective, precise, and accessible therapeutic strategies. Among conventional cancer treatments, radiotherapy plays a central role, being used in over half of patients for curative or palliative purposes, either alone or in combination with other therapies. Besides photon-based radiotherapy, particle therapies such as proton and carbon ion radiotherapy (CIRT) have emerged as promising alternatives due to their superior dose localization and potential biological advantages. A critical aspect of particle therapy is range verification, which is essential to ensure a proper dose delivery. CIRT may benefit from such verification due to its sensitivity to range uncertainties. Positron emission tomography (PET) is commonly employed for in-vivo range verification by exploiting the distribution of positron emitters generated during irradiation. However, because the PET signal is not directly proportional to the delivered dose, the measured activity cannot be directly compared with dose distribution. Instead, predicted positron emitter distributions (PED) are required, and treatment verification is achieved by comparing them with the measured signal. Monte Carlo (MC) simulations are typically employed for PED prediction, providing high accuracy but at the cost of substantial computational time. To overcome these challenges, alternative analytical approaches have been proposed, offering a significant reduction in computation time without compromising reliability. This thesis work aims to validate a novel analytical framework, developed at Ludwig-Maximilians-Universität München, for predicting three-dimensional PED in CIRT, offering a computationally efficient alternative to MC simulations. Validation was performed in two stages: first, by comparing analytical predictions with MC simulations for a 12C-ion pencil beam in a PMMA phantom; second, by converting the analytical PED into an activity distribution for direct comparison with in-beam PET measurements provided by the National Institutes for Quantum and Radiological Science and Technology in Japan. The thesis begins with an introduction outlining its objectives and relevance, followed by a review of key concepts in radiation interaction, CIRT, PET imaging, and MC simulations. Afterwards, it presents the analytical framework for PED and activity prediction and it reports the validation results, and finally it concludes with a discussion of the main findings and future perspectives. The results demonstrate that the proposed analytical method provides accurate PED predictions with substantially reduced computation times, supporting its potential integration into treatment planning systems. This work contributes to advancing range verification strategies in CIRT, thereby promoting greater treatment precision and improving patient outcomes in next-generation radiotherapy.
Il cancro rappresenta una delle maggiori sfide sanitarie, sociali ed economiche del XXI secolo. Nel 2022 sono stati registrati circa 20 milioni di nuovi casi e 9,7 milioni di decessi, con i tumori più diffusi che riguardano polmoni, seno, colon-retto, prostata e stomaco. Si prevede che l’incidenza del cancro aumenterà del 77% tra il 2022 e il 2050, evidenziando l’urgente necessità di strategie terapeutiche efficaci, precise e accessibili. Tra i trattamenti convenzionali, la radioterapia riveste un ruolo centrale, essendo impiegata in oltre la metà dei pazienti a scopo curativo o palliativo, sia da sola sia in combinazione con altre terapie. Oltre alla radioterapia basata su fotoni, le terapie con particelle, come la radioterapia con protoni e ioni di carbonio (CIRT), si sono affermate come alternative promettenti grazie alla loro superiore capacità di localizzazione della dose e ai potenziali vantaggi biologici. Un aspetto cruciale della terapia con particelle è la verifica della profondità di penetrazione (range verification), fondamentale per garantire una corretta somministrazione della dose. La CIRT può trarre beneficio da questa verifica, data la sua sensibilità alle incertezze nel range. La tomografia a emissione di positroni (PET) è comunemente utilizzata per la verifica in-vivo sfruttando la distribuzione degli emettitori di positroni generati durante l’irradiazione. Tuttavia, poiché il segnale PET non è direttamente proporzionale alla dose somministrata, l’attività misurata non può essere confrontata direttamente con la distribuzione della dose. È quindi necessario prevedere la distribuzione degli emettitori di positroni (PED) e confrontarla con il segnale misurato per la verifica del trattamento. Le simulazioni Monte Carlo (MC) sono generalmente utilizzate per la previsione della PED, garantendo alta accuratezza ma con tempi computazionali rilevanti. Per superare questi limiti sono stati proposti approcci analitici alternativi, che riducono significativamente i tempi di calcolo senza compromettere l’affidabilità. Questo lavoro di tesi si propone di validare un nuovo framework analitico, sviluppato presso la Ludwig-Maximilians-Universität München, per la previsione tridimensionale della PED nella CIRT, offrendo un’alternativa computazionalmente efficiente alle simulazioni MC. La validazione è stata condotta in due fasi: prima, confrontando le previsioni analitiche con le simulazioni MC per un fascio a matita (pencil beam) di ioni 12C in un fantoccio di PMMA; successivamente, convertendo la PED analitica in una distribuzione di attività per un confronto diretto con le misure PET in-beam fornite dal National Institutes for Quantum and Radiological Science and Technology, in Giappone. La tesi inizia con un’introduzione agli obiettivi e alla rilevanza dello studio, seguita da una revisione dei concetti chiave sull’interazione delle radiazioni, sulla CIRT, sull’imaging PET e sulle simulazioni MC. Successivamente viene presentato il framework analitico per la previsione della PED e dell’attività, vengono riportati i risultati della validazione e, concluse le osservazioni, si riporta una discussione delle prospettive future. I risultati mostrano che il metodo analitico proposto consente previsioni accurate della PED con tempi di calcolo significativamente ridotti, supportandone l’integrazione nei piani di trattamento. Questo lavoro contribuisce a migliorare le strategie di range verification nella CIRT, favorendo una maggiore precisione terapeutica e migliorando gli esiti clinici nella radioterapia di nuova generazione.
Validazione mediante In-Beam PET di un approccio analitico per predire la distribuzione 3D di emettitori di positroni nella terapia con ioni carbonio
VALLARI, GIULIA
2024/2025
Abstract
Cancer is one of the greatest health, social, and economic challenges of the 21st century. In 2022, there were about 20 million new cases and 9.7 million deaths, with lung, breast, colorectal, prostate, and stomach cancers most prevalent. The incidence of cancer is expected to increase by 77% between 2022 and 2050, underscoring the urgent need for effective, precise, and accessible therapeutic strategies. Among conventional cancer treatments, radiotherapy plays a central role, being used in over half of patients for curative or palliative purposes, either alone or in combination with other therapies. Besides photon-based radiotherapy, particle therapies such as proton and carbon ion radiotherapy (CIRT) have emerged as promising alternatives due to their superior dose localization and potential biological advantages. A critical aspect of particle therapy is range verification, which is essential to ensure a proper dose delivery. CIRT may benefit from such verification due to its sensitivity to range uncertainties. Positron emission tomography (PET) is commonly employed for in-vivo range verification by exploiting the distribution of positron emitters generated during irradiation. However, because the PET signal is not directly proportional to the delivered dose, the measured activity cannot be directly compared with dose distribution. Instead, predicted positron emitter distributions (PED) are required, and treatment verification is achieved by comparing them with the measured signal. Monte Carlo (MC) simulations are typically employed for PED prediction, providing high accuracy but at the cost of substantial computational time. To overcome these challenges, alternative analytical approaches have been proposed, offering a significant reduction in computation time without compromising reliability. This thesis work aims to validate a novel analytical framework, developed at Ludwig-Maximilians-Universität München, for predicting three-dimensional PED in CIRT, offering a computationally efficient alternative to MC simulations. Validation was performed in two stages: first, by comparing analytical predictions with MC simulations for a 12C-ion pencil beam in a PMMA phantom; second, by converting the analytical PED into an activity distribution for direct comparison with in-beam PET measurements provided by the National Institutes for Quantum and Radiological Science and Technology in Japan. The thesis begins with an introduction outlining its objectives and relevance, followed by a review of key concepts in radiation interaction, CIRT, PET imaging, and MC simulations. Afterwards, it presents the analytical framework for PED and activity prediction and it reports the validation results, and finally it concludes with a discussion of the main findings and future perspectives. The results demonstrate that the proposed analytical method provides accurate PED predictions with substantially reduced computation times, supporting its potential integration into treatment planning systems. This work contributes to advancing range verification strategies in CIRT, thereby promoting greater treatment precision and improving patient outcomes in next-generation radiotherapy.| File | Dimensione | Formato | |
|---|---|---|---|
|
Vallari_Tesi.pdf
embargo fino al 28/04/2026
Descrizione: Tesi Vallari Giulia
Dimensione
14.14 MB
Formato
Adobe PDF
|
14.14 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31454