Drug-resistant seizures affect about 30% of people with epilepsy who do not respond to antiseizure medications, representing a major clinical challenge. One reason why past research has failed in this endeavor may lie in the exclusive use of neuron-centered approaches. However, neurons are strictly interconnected with astrocytes and dysregulation of this bilateral communication can exacerbate various neurological diseases, including epilepsy. Astrocytes are essential for maintaining brain homeostasis. Increasing evidence supports that deregulation of astrocyte homeostatic functions may impact neuronal excitability and contribute to epileptogenesis. However, the temporal and spatial dynamics of changes in astrocyte phenotype during epileptogenesis remain to be elucidated. We studied specific astrocytic markers to track their dysfunctional changes during epileptogenesis in an adult mouse model of acquired epilepsy. Status epilepticus (SE) was induced in mice by intra-amygdala kainate, followed after 1 week by spontaneous seizures. SE mice were EEG recorded (24/7) to monitor seizures and sacrificed at critical times of disease development post-SE: before (24 h - 96 h) and at disease onset (1 week), and during early (3 weeks) and chronic epilepsy (3 months). Controls were saline-injected mice. Brains were processed for quantitative immunohistochemistry or immunofluorescence to examine astrocyte reactivity and morphology (GFAP), the glutamate transporter Glt-1, the Kir4.1 channel, and markers of cellular senescence (β-galactosidase activity, IL-1β) in the epileptogenic cortico-hippocampal-thalamic circuitry. We found that GFAP immunoreactivity increased in reactive astrocytes with distinct temporal and regional patterns, possibly reflecting their progressive recruitment into the epileptogenic network. Activated astrocytes show reduced branching complexity resulting in a remodelling of synaptic gliotransmission. Glt-1 and Kir4.1 expression were reduced in GFAP-positive cells within the network, suggesting impaired glutamate and K+ clearance. Western blot analysis confirmed these changes. IL-1β and β-galactosidase activity were induced in GFAP-positive astrocytes during disease development, indicating persistent inflammation and cellular senescence. Our study shows that maladaptive molecular changes occur in reactive astrocytes of the epileptogenic circuitry during epilepsy development, namely a reduced capacity to reuptake extracellular glutamate and K+, inflammation and cell senescence. These maladaptive changes may play a critical role in hyperexcitability and may contribute to the mechanisms of acquired epilepsy. Targeting these astrocytic dysfunctions may represent a novel strategy to control drug-resistant seizures.
Le crisi epilettiche farmacoresistenti colpiscono circa il 30% delle persone con epilessia che non rispondono ai farmaci antiepilettici, rappresentando una grande sfida clinica. Uno dei motivi per cui la ricerca finora ha fallito in questo ambito potrebbe risiedere nell’approccio centrato esclusivamente sui neuroni. Tuttavia, i neuroni sono strettamente interconnessi con gli astrociti, e una disfunzione di questa comunicazione bilaterale può peggiorare diverse malattie neurologiche, tra cui l’epilessia. Gli astrociti sono fondamentali per mantenere l’omeostasi cerebrale. Un numero crescente di evidenze suggerisce che la deregolazione delle funzioni omeostatiche degli astrociti possa influenzare l’eccitabilità neuronale e contribuire all’epilettogenesi. Tuttavia, le dinamiche temporali e spaziali dei cambiamenti del fenotipo astrocitario durante l’epilettogenesi restano ancora da chiarire. Abbiamo studiato specifici marcatori astrocitari per monitorare i cambiamenti disfunzionali durante l’epilettogenesi in un modello murino adulto di epilessia acquisita. Lo status epilettico (SE) è stato indotto nei topi tramite iniezione intra-amigdaloidea di kainato, seguita dopo una settimana dalla comparsa di crisi epilettiche spontanee. I topi con SE sono stati monitorati con EEG continuo (24/7) per rilevare le crisi e successivamente sacrificati in momenti critici dello sviluppo della malattia post-SE: prima dell’insorgenza (24 h - 96 h), all’esordio della malattia (1 settimana), nella fase precoce (3 settimane) e nella fase cronica dell’epilessia (3 mesi). I topi di controllo hanno ricevuto iniezioni di soluzione salina. I cervelli sono stati analizzati mediante immunoistochimica quantitativa o immunofluorescenza per esaminare la reattività e la morfologia astrocitaria (GFAP), il trasportatore del glutammato Glt-1, il canale Kir4.1 e marcatori di senescenza cellulare (attività della β-galattosidasi, IL-1β) nel circuito epilettogeno cortico-ippocampo-talamo. Abbiamo riscontrato un aumento dell’immunoreattività per GFAP negli astrociti reattivi, con pattern temporali e regionali distinti, che potrebbero riflettere il loro progressivo reclutamento nella rete epilettogena. Gli astrociti attivati mostrano una ridotta complessità della ramificazione, con conseguente rimodellamento della gliotrasmissione sinaptica. L’espressione di Glt-1 e Kir4.1 risultava ridotta nelle cellule GFAP-positive all’interno della rete, suggerendo un’alterata capacità di rimozione di glutammato e K+ extracellulari. Questi cambiamenti sono stati confermati anche tramite western blot. Inoltre, durante lo sviluppo della malattia, è stata osservata un’induzione dell’IL-1β e dell’attività della β-galattosidasi negli astrociti GFAP-positivi, indicando uno stato infiammatorio persistente e senescenza cellulare. Il nostro studio dimostra che, durante lo sviluppo dell’epilessia, si verificano cambiamenti molecolari maladattativi negli astrociti reattivi del circuito epilettogeno, tra cui una ridotta capacità di riassorbire glutammato e potassio extracellulari, infiammazione e senescenza cellulare. Questi cambiamenti maladattativi possono avere un ruolo cruciale nell’iper-eccitabilità e contribuire ai meccanismi dell’epilessia acquisita. Prendere di mira queste disfunzioni astrocitarie potrebbe rappresentare una nuova strategia per controllare le crisi epilettiche farmacoresistenti.
Caratterizzazione del fenotipo astrocitario durante l’epilettogenesi in un modello murino di epilessia acquisita: implicazioni per nuove strategie terapeutiche
FERLITO, CHIARA
2024/2025
Abstract
Drug-resistant seizures affect about 30% of people with epilepsy who do not respond to antiseizure medications, representing a major clinical challenge. One reason why past research has failed in this endeavor may lie in the exclusive use of neuron-centered approaches. However, neurons are strictly interconnected with astrocytes and dysregulation of this bilateral communication can exacerbate various neurological diseases, including epilepsy. Astrocytes are essential for maintaining brain homeostasis. Increasing evidence supports that deregulation of astrocyte homeostatic functions may impact neuronal excitability and contribute to epileptogenesis. However, the temporal and spatial dynamics of changes in astrocyte phenotype during epileptogenesis remain to be elucidated. We studied specific astrocytic markers to track their dysfunctional changes during epileptogenesis in an adult mouse model of acquired epilepsy. Status epilepticus (SE) was induced in mice by intra-amygdala kainate, followed after 1 week by spontaneous seizures. SE mice were EEG recorded (24/7) to monitor seizures and sacrificed at critical times of disease development post-SE: before (24 h - 96 h) and at disease onset (1 week), and during early (3 weeks) and chronic epilepsy (3 months). Controls were saline-injected mice. Brains were processed for quantitative immunohistochemistry or immunofluorescence to examine astrocyte reactivity and morphology (GFAP), the glutamate transporter Glt-1, the Kir4.1 channel, and markers of cellular senescence (β-galactosidase activity, IL-1β) in the epileptogenic cortico-hippocampal-thalamic circuitry. We found that GFAP immunoreactivity increased in reactive astrocytes with distinct temporal and regional patterns, possibly reflecting their progressive recruitment into the epileptogenic network. Activated astrocytes show reduced branching complexity resulting in a remodelling of synaptic gliotransmission. Glt-1 and Kir4.1 expression were reduced in GFAP-positive cells within the network, suggesting impaired glutamate and K+ clearance. Western blot analysis confirmed these changes. IL-1β and β-galactosidase activity were induced in GFAP-positive astrocytes during disease development, indicating persistent inflammation and cellular senescence. Our study shows that maladaptive molecular changes occur in reactive astrocytes of the epileptogenic circuitry during epilepsy development, namely a reduced capacity to reuptake extracellular glutamate and K+, inflammation and cell senescence. These maladaptive changes may play a critical role in hyperexcitability and may contribute to the mechanisms of acquired epilepsy. Targeting these astrocytic dysfunctions may represent a novel strategy to control drug-resistant seizures.| File | Dimensione | Formato | |
|---|---|---|---|
|
TesiChiara Ferlito_Laurea.pdf
accesso aperto
Dimensione
3.2 MB
Formato
Adobe PDF
|
3.2 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31544