DNA replication is a fundamental process for the maintenance of genomic stability. During replication, cells encounter DNA damage caused by intrinsic factors such as reactive oxygen species and extrinsic agents like ultraviolet (UV) light. This damage can stall replication forks and impair genome integrity. To mitigate this, cells have evolved DNA damage tolerance mechanisms including translesion synthesis (TLS), where specialized DNA polymerases bypass lesions to allow replication completion. DNA Polymerase η (Pol η), a member of the Y-family of TLS polymerases, is particularly important for error-free bypass of UV-induced cyclobutane pyrimidine dimers. Mutations in the POLH gene encoding Pol η cause Xeroderma Pigmentosum Variant (XPV), a disorder characterized by UV sensitivity and predisposition to skin cancer. Pol η activity and recruitment to stalled forks are tightly controlled by various post-translational modifications (PTMs) such as ubiquitination, phosphorylation, SUMOylation, and O-GlcNAcylation, to balance lesion bypass efficiency against mutagenic risk. Among these, protein acetylation has emerged as an important regulatory mechanism in the DNA damage response in vitro, yet the in vivo role of Pol η acetylation remained poorly understood prior to this study. This thesis advances the understanding of Pol η regulation by confirming its in vivo acetylation, strongly enhanced under replication stress induced by hydroxyurea and UV irradiation. Experimental evidence identifies p300 as the principal acetyltransferase responsible for this modification, with CBP supporting basal levels. Functional studies demonstrate that p300 regulation is mediated by proteasomal and autophagic degradation mediated through ubiquitination pathways, involving critical lysine residues and the ubiquitin-binding zinc finger domain. The same studies indicated that acetylation safeguards Pol η from autophagic degradation. Additionally, the ATR kinase acts as a negative regulator of Pol η acetylation, linking replication stress signaling with Pol η stability and activity. Together, these findings reveal a complex regulatory network where Pol η acetylation by p300/CBP fine-tunes TLS polymerase function during DNA damage tolerance, coordinating with ubiquitination and checkpoint kinase pathways to ensure optimal DNA replication fidelity and cellular survival. This work highlights novel layers of Pol η control with implications for understanding genome maintenance and potential targets for cancer therapy.
La replicazione del DNA è un processo fondamentale per il mantenimento della stabilità genomica. Durante la replicazione, le cellule si trovano ad affrontare danni al DNA causati da fattori intrinseci come le specie reattive dell’ossigeno e da agenti estrinseci come la luce ultravioletta (UV). Questi danni possono arrestare le forcelle di replicazione e compromettere l’integrità del genoma. Per far fronte a questo problema, le cellule hanno evoluto meccanismi di tolleranza ai danni del DNA, inclusa la sintesi translesione (TLS), in cui DNA polimerasi specializzate bypassano le lesioni per permettere il completamento della replicazione. La DNA Polimerasi η (Pol η), membro della famiglia Y delle polimerasi TLS, è particolarmente cruciale per il bypass dei dimeri di pirimidina-ciclobutano indotti dai raggi UV. Mutazioni nel gene POLH, che codifica per Pol η, causano la variante Xeroderma Pigmentoso (XPV), un disturbo caratterizzato da sensibilità agli UV e predisposizione al cancro cutaneo. L’attività di Pol η e il suo reclutamento alle forcelle bloccate sono strettamente regolati da diverse modifiche post-traduzionali (PTM), come ubiquitinazione, fosforilazione, SUMOilazione e O-GlcNAcilazione, per bilanciare l’efficienza del bypass delle lesioni con il rischio mutageno. Tra queste, l’acetilazione proteica si è affermata come un importante meccanismo regolatore nella risposta ai danni del DNA in vitro, mentre il ruolo in vivo dell’acetilazione di Pol η era poco chiaro prima di questo studio. Questa tesi avanza la comprensione della regolazione di Pol η confermandone l’acetilazione in vivo, fortemente aumentata sotto stress replicativo indotto da idrossiurea e irraggiamento UV. Evidenze sperimentali identificano p300 come la principale acetiltransferasi responsabile di questa modifica, con CBP a supportare i livelli basali. Studi funzionali dimostrano che la regolazione mediata da p300 coinvolge degradazione proteosomiale e autofagica attraverso vie di ubiquitinazione, che interessano residui critici di lisina e il dominio zinc-finger legante l’ubiquitina (UBZ). Gli stessi studi indicano che l’acetilazione protegge Pol η dalla degradazione autofagica. Inoltre, la chinasi ATR agisce come regolatore negativo dell’acetilazione di Pol η, collegando la segnalazione dello stress replicativo con la stabilità e l’attività di Pol η. Nel complesso, questi risultati rivelano una rete regolatoria complessa, dove l’acetilazione di Pol η da parte di p300/CBP affina la funzione della polimerasi TLS durante la tolleranza ai danni del DNA, coordinandosi con le vie di ubiquitinazione e le chinasi checkpoint per garantire fedeltà ottimale della replicazione e sopravvivenza cellulare. Questo lavoro evidenzia nuovi livelli di controllo di Pol η con ripercussioni sulla comprensione del mantenimento del genoma e su potenziali target terapeutici per il trattamento del cancro.
The Impact of acetylation on the regulation of DNA Polymerase η
MARELLA, FRANCESCO
2024/2025
Abstract
DNA replication is a fundamental process for the maintenance of genomic stability. During replication, cells encounter DNA damage caused by intrinsic factors such as reactive oxygen species and extrinsic agents like ultraviolet (UV) light. This damage can stall replication forks and impair genome integrity. To mitigate this, cells have evolved DNA damage tolerance mechanisms including translesion synthesis (TLS), where specialized DNA polymerases bypass lesions to allow replication completion. DNA Polymerase η (Pol η), a member of the Y-family of TLS polymerases, is particularly important for error-free bypass of UV-induced cyclobutane pyrimidine dimers. Mutations in the POLH gene encoding Pol η cause Xeroderma Pigmentosum Variant (XPV), a disorder characterized by UV sensitivity and predisposition to skin cancer. Pol η activity and recruitment to stalled forks are tightly controlled by various post-translational modifications (PTMs) such as ubiquitination, phosphorylation, SUMOylation, and O-GlcNAcylation, to balance lesion bypass efficiency against mutagenic risk. Among these, protein acetylation has emerged as an important regulatory mechanism in the DNA damage response in vitro, yet the in vivo role of Pol η acetylation remained poorly understood prior to this study. This thesis advances the understanding of Pol η regulation by confirming its in vivo acetylation, strongly enhanced under replication stress induced by hydroxyurea and UV irradiation. Experimental evidence identifies p300 as the principal acetyltransferase responsible for this modification, with CBP supporting basal levels. Functional studies demonstrate that p300 regulation is mediated by proteasomal and autophagic degradation mediated through ubiquitination pathways, involving critical lysine residues and the ubiquitin-binding zinc finger domain. The same studies indicated that acetylation safeguards Pol η from autophagic degradation. Additionally, the ATR kinase acts as a negative regulator of Pol η acetylation, linking replication stress signaling with Pol η stability and activity. Together, these findings reveal a complex regulatory network where Pol η acetylation by p300/CBP fine-tunes TLS polymerase function during DNA damage tolerance, coordinating with ubiquitination and checkpoint kinase pathways to ensure optimal DNA replication fidelity and cellular survival. This work highlights novel layers of Pol η control with implications for understanding genome maintenance and potential targets for cancer therapy.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis Francesco Marella MBG_pdfA.pdf
embargo fino al 12/05/2027
Dimensione
2.52 MB
Formato
Adobe PDF
|
2.52 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/31665