Glycosylation is one of the most common post-translational modifications of proteins and plays a crucial role in regulating biological and physiological processes. Alterations in protein glycosylation patterns are often associated with oncogenic transformations, as aberrant glycosylation is correlated to proliferation, invasion and metastasis. Among the most relevant cancer biomarkers is the abnormal expression of truncated O-glycans on the transmembrane protein MUC1, including the Thomsen-Friedenreich related antigens and their sialylated forms: sT and sTn. In particular, sT expression is largely increased in certain malignancies when compared to normal tissues, such as breast and bladder cancer, while sTn stands out for its high expression in most gastric, colorectal, ovarian, breast, and pancreatic carcinomas, with no detectable expression in the corresponding healthy tissues. The most commonly used methods to detect these antigens include antibodies, lectins or aptamers; however, their limited stability, low selectivity and high production costs restrict their diagnostic applications. To overcome these limitations, Molecular Imprinting Technique represents a promising alternative: Molecularly Imprinted Polymers (MIPs) are synthetic recognition materials featuring tailor-made binding sites, generated in the presence of the target molecule. These systems show recognition abilities comparable to those of antibodies, but higher stability and robustness. In this thesis project, water-based MIP-nanogels were synthesised employing the solid-phase approach, using oversimplified models of the tumor-associated antigens sT and sTn as templates: the sugars α2,3-sialyllactose and α2,6-sialyllactose, respectively. These were first immobilized on the surface of a solid support and then employed during polymerization. The obtained nanogels were morphologically characterised using Dynamic Light Scattering (DLS), and their binding performance and selectivity were evaluated by DLS and Quartz Crystal Microbalance (QCM) analysis. Furthermore, their long-term stability was assessed over a 60 days period of time. This work is part of a broader research project aimed at the future use of these nanogels, characterized by high affinity and selectivity toward their targets, for the early diagnosis of cancer. Such an approach could enable prompt therapeutic intervention and significantly improve patient outcomes.
La glicosilazione rappresenta una delle più comuni modificazioni post-traduzionali delle proteine e svolge un ruolo cruciale nella regolazione di numerosi processi biologici e fisiologici. Alterazioni a carico di questo processo sono spesso associate a trasformazioni oncogeniche, infatti pattern di glicosilazione aberranti sono spesso correlati a proliferazione, invasione e metastasi. Tra i biomarcatori tumorali più rilevanti figura l’espressione anomala di O-glicani troncati a livello della proteina transmembrana MUC1, quali gli antigeni del gruppo Thomsen-Friedenreich e le loro forme sialilate: sT e sTn. In particolare, l’espressione di sT aumenta notevolmente in alcune neoplasie rispetto ai tessuti sani, come nel caso del tumore al seno e alla vescica. sTn, invece, viene espresso nella maggior parte dei carcinomi gastrici, ovarici, mammari, pancreatici e colorettali, mentre non risulta rilevabile nei corrispondenti tessuti normali. I metodi più comunemente impiegati per il monitoraggio di questi antigeni si basano sull’utilizzo di anticorpi, lectine o aptameri; tuttavia, la loro limitata stabilità, la bassa selettività e gli elevati costi di produzione ne riducono le applicazioni diagnostiche. Per superare tali svantaggi, la tecnica del Molecular Imprinting rappresenta un’alternativa promettente: i Molecularly Imprinted Polymers (MIPs) sono materiali di riconoscimento sintetici caratterizzati da siti di legame generati in presenza della molecola bersaglio. Questi sistemi sono dotati di capacità di riconoscimento comparabili a quelle degli anticorpi, ma di stabilità e robustezza superiori. In questo progetto di tesi sono stati sintetizzati MIPs in formato nanogel in ambiente acquoso mediante approccio in fase solida, utilizzando come templati modelli semplificati degli antigeni tumorali sT e sTn: rispettivamente gli zuccheri sialilati α2,3-sialillattosio e α2,6-sialillattosio. Essi sono stati inizialmente immobilizzati sulla superficie di un supporto solido e successivamente impiegati durante la reazione di polimerizzazione. I nanogels ottenuti sono stati caratterizzati morfologicamente mediante Dynamic Light Scattering (DLS), mentre le loro capacità di legame e la loro selettività sono state valutate tramite analisi DLS e Quartz Crystal Microbalance (QCM). Inoltre, ne è stata studiata la stabilità a lungo termine nell’arco di un periodo di 60 giorni. Questo lavoro si inserisce all’interno di un progetto di ricerca più ampio volto al futuro impiego di questi nanogels, caratterizzati da elevata affinità e selettività verso i rispettivi target, per la diagnosi precoce del cancro. Un simile approccio potrebbe consentire interventi terapeutici tempestivi e migliorare significativamente la prognosi dei pazienti.
Progettazione, sintesi e caratterizzazione di solid phase Molecularly Imprinted Polymers per il riconoscimento selettivo di modelli semplificati degli antigeni tumorali sT e sTn.
SCHIMPERNA, SARA
2024/2025
Abstract
Glycosylation is one of the most common post-translational modifications of proteins and plays a crucial role in regulating biological and physiological processes. Alterations in protein glycosylation patterns are often associated with oncogenic transformations, as aberrant glycosylation is correlated to proliferation, invasion and metastasis. Among the most relevant cancer biomarkers is the abnormal expression of truncated O-glycans on the transmembrane protein MUC1, including the Thomsen-Friedenreich related antigens and their sialylated forms: sT and sTn. In particular, sT expression is largely increased in certain malignancies when compared to normal tissues, such as breast and bladder cancer, while sTn stands out for its high expression in most gastric, colorectal, ovarian, breast, and pancreatic carcinomas, with no detectable expression in the corresponding healthy tissues. The most commonly used methods to detect these antigens include antibodies, lectins or aptamers; however, their limited stability, low selectivity and high production costs restrict their diagnostic applications. To overcome these limitations, Molecular Imprinting Technique represents a promising alternative: Molecularly Imprinted Polymers (MIPs) are synthetic recognition materials featuring tailor-made binding sites, generated in the presence of the target molecule. These systems show recognition abilities comparable to those of antibodies, but higher stability and robustness. In this thesis project, water-based MIP-nanogels were synthesised employing the solid-phase approach, using oversimplified models of the tumor-associated antigens sT and sTn as templates: the sugars α2,3-sialyllactose and α2,6-sialyllactose, respectively. These were first immobilized on the surface of a solid support and then employed during polymerization. The obtained nanogels were morphologically characterised using Dynamic Light Scattering (DLS), and their binding performance and selectivity were evaluated by DLS and Quartz Crystal Microbalance (QCM) analysis. Furthermore, their long-term stability was assessed over a 60 days period of time. This work is part of a broader research project aimed at the future use of these nanogels, characterized by high affinity and selectivity toward their targets, for the early diagnosis of cancer. Such an approach could enable prompt therapeutic intervention and significantly improve patient outcomes.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI Sara Schimperna DEFINITIVA.pdf
accesso aperto
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/32024