The thesis addresses the study of Plant Microbial Fuel Cells (PMFC) as new technologies for the sustainable production of electricity from renewable sources. In particular, we focused on the production of PMFCs with different characteristics to verify whether these can help improve the efficiency of electricity production in systems. Microbial Fuel Cells (MFC) are based on the ability of bacteria to degrade organic compounds in an anaerobic environment, releasing electrons that generate electricity. These cells consist of an anode compartment and a cathode compartment separated by a proton exchange membrane. PMFCs are a version of this system in which the main feature is the presence of a plant as an additional component. In this version, the roots of the plants release organic substances through their leachate, thus feeding the microorganisms present in the soil. This exploits the phenomenon whereby the microbial populations present in the soil around the rhizosphere degrade organic substances to produce electrons; when the electrons complete the circuit, electricity is produced. This thesis proposes a PMFC prototype that consists of separating the MFC from the plant. The pot containing the plants is located at the top and the plant is watered regularly; the drainage water filters into the container below, which contains the cells. In this way, the plant provides nutrients to the bacterial colonies in the soil through the nutrient-rich leachate derived from the rhizodeposits. In particular, the cells set up indoors were constructed with different characteristics concerning the presence of the Trichoderma fungus and the presence of a membrane. The Trichoderma fungus was tested with two different inoculations: in one case, it was inoculated into the plant's soil and therefore in contact with the plant's roots, while in the second case, it was inoculated only into the soil present in the cell. Sets were also prepared with and without membranes to assess their influence. A total of 72 cells were constructed, divided into 6 sets: - control set - control set with membrane - set with Trichoderma inoculation in the plant - set with Trichoderma inoculation in the plant and presence of membrane - set with Trichoderma inoculation in the soil inside the cell - set with Trichoderma inoculation in the soil inside the cell and presence of membrane The results showed significant differences between the configurations. In particular, the sets with Trichoderma obtained better results, demonstrating how it can be evaluated as an additive in the construction of cells and can thus improve their performance. The sets with membranes achieved higher values overall, showing that this may also influence activity. Two types of experiments were conducted for the outdoor trials: - set up with different plants to assess which of them performed best - set up with gold cathodes wires to assess whether the change in material influenced activity Among the plants, Allium angulosum showed the highest values, indicating how the different characteristics of plants can influence cell function. As for the cathode material, the gold cathode wires achieved the highest values. This is very important information, as in outdoor setups it is necessary to take into account how the rapid oxidation of the cathode can be a problem and how finding a more resistant material is therefore a good strategy.
La tesi affronta lo studio delle Plant Microbial Fuel Cells (PMFC) come nuove tecnologie per la produzione sostenibile di energia elettrica da fonti rinnovabili. In particolare, ci siamo focalizzati sulla realizzazione di celle con caratteristiche diverse per verificare se queste possano aiutare a migliorare l'efficienza di produzione di energia elettrica dei sistemi. Le Microbial Fuel Cells (MFC) sono celle a combustibile microbiche che si basano sulla capacità di batteri di degradare composti organici in ambiente anaerobico, liberando elettroni che permettono di generare corrente. Queste celle sono composte da un comparto anodico ed uno catodico separati da una membrana a scambio protonico. Le PMFC rappresentano una versione di questo sistema in cui la caratteristica principale è la presenza di una pianta come componente aggiuntivo. In questa versione sono le radici delle piante a rilasciare sostanze organiche tramite il loro percolato alimentando così i microorganismi presenti nel suolo. Viene così sfruttato il fenomeno per cui le popolazioni microbiche presenti nel suolo intorno alla rizosfera degradano le sostanze organiche per produrre elettroni; quando gli elettroni completano il circuito viene prodotta elettricità. Nella presente tesi è stato proposto un prototipo di PMFC che consiste nella separazione della pianta della MFC. Il vaso contenente le piante si trova nella parte superiore e la pianta viene bagnata regolarmente; l'acqua di drenaggio filtra nel contenitore sottostante, che contiene le celle. In questo modo la pianta fornisce nutrienti alle colonie batteriche del suolo attraverso il percolato ricco di sostanze nutritive derivato dai rizodepositi. In particolare, le celle allestite in indoor sono state costruite con delle caratteristiche diverse che riguardano la presenza del fungo Trichoderma e la presenza di una membrana. Il fungo Trichoderma è stato testato con due inoculi diversi: in un caso è stato inoculato nel terreno della pianta e quindi a contatto con le radici della pianta mentre nel secondo caso è stato inoculato solo nel terreno presente nella cella. Sono stati preparati anche set con assenza o con presenza di membrana per valutarne l’influenza. In totale sono state costruite 72 celle divise in 6 set: - set di controllo - set di controllo con membrana - set con inoculo del Trichoderma nella pianta - set con inoculo del Trichoderma nella pianta e presenza di membrana - set con inoculo del Trichoderma nel suolo all’interno della cella - set con inoculo del Trichoderma nel suolo all’interno della cella e presenza di membrana I risultati hanno evidenziato differenze significative tra le configurazioni. In particolare i set con presenza di Trichoderma hanno ottenuto risultati migliori dimostrando come questo possa essere valutato come additivo nella costruzione delle celle e possa in questo modo migliorarne le performance. I set con membrana nel complesso hanno raggiunto valori più alti mostrando come anche questa possa influenzare l’attività. Per le sperimentazioni outdoor sono stati condotti due tipi di esperimenti: - allestimento di celle con diverse piante per valutare quale tra esse avesse le performance migliore - allestimento di celle con catodo in oro per valutare se il cambio di materiale influenzasse l’attività Tra le piante Allium angulosum ha mostrato i valori maggiori indicando come le diverse caratteristiche delle piante possano andare ad influenzare il funzionamento delle celle. Per quanto riguarda il materiale di catodo invece ad avere raggiunto i valori maggiori è stato il catodo in oro. Questo è un dato molto importante in quanto nell’allestimento outdoor bisogna tenere in considerazione come la veloce ossidazione del catodo possa rappresentare un problema e come quindi trovare un materiale più resistente sia una buona strategia.
Plant Microbial Fuel Cells: sperimentazione indoor e outdoor per migliorare le prestazioni elettriche
MAHMOUD, MARIAM
2024/2025
Abstract
The thesis addresses the study of Plant Microbial Fuel Cells (PMFC) as new technologies for the sustainable production of electricity from renewable sources. In particular, we focused on the production of PMFCs with different characteristics to verify whether these can help improve the efficiency of electricity production in systems. Microbial Fuel Cells (MFC) are based on the ability of bacteria to degrade organic compounds in an anaerobic environment, releasing electrons that generate electricity. These cells consist of an anode compartment and a cathode compartment separated by a proton exchange membrane. PMFCs are a version of this system in which the main feature is the presence of a plant as an additional component. In this version, the roots of the plants release organic substances through their leachate, thus feeding the microorganisms present in the soil. This exploits the phenomenon whereby the microbial populations present in the soil around the rhizosphere degrade organic substances to produce electrons; when the electrons complete the circuit, electricity is produced. This thesis proposes a PMFC prototype that consists of separating the MFC from the plant. The pot containing the plants is located at the top and the plant is watered regularly; the drainage water filters into the container below, which contains the cells. In this way, the plant provides nutrients to the bacterial colonies in the soil through the nutrient-rich leachate derived from the rhizodeposits. In particular, the cells set up indoors were constructed with different characteristics concerning the presence of the Trichoderma fungus and the presence of a membrane. The Trichoderma fungus was tested with two different inoculations: in one case, it was inoculated into the plant's soil and therefore in contact with the plant's roots, while in the second case, it was inoculated only into the soil present in the cell. Sets were also prepared with and without membranes to assess their influence. A total of 72 cells were constructed, divided into 6 sets: - control set - control set with membrane - set with Trichoderma inoculation in the plant - set with Trichoderma inoculation in the plant and presence of membrane - set with Trichoderma inoculation in the soil inside the cell - set with Trichoderma inoculation in the soil inside the cell and presence of membrane The results showed significant differences between the configurations. In particular, the sets with Trichoderma obtained better results, demonstrating how it can be evaluated as an additive in the construction of cells and can thus improve their performance. The sets with membranes achieved higher values overall, showing that this may also influence activity. Two types of experiments were conducted for the outdoor trials: - set up with different plants to assess which of them performed best - set up with gold cathodes wires to assess whether the change in material influenced activity Among the plants, Allium angulosum showed the highest values, indicating how the different characteristics of plants can influence cell function. As for the cathode material, the gold cathode wires achieved the highest values. This is very important information, as in outdoor setups it is necessary to take into account how the rapid oxidation of the cathode can be a problem and how finding a more resistant material is therefore a good strategy.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI MAHMOUD MARIAM AGRI (1).pdf
embargo fino al 23/06/2026
Descrizione: The thesis addresses the study of Plant Microbial Fuel Cells (PMFC) as new technologies for the sustainable production of electricity from renewable sources. In particular, we focused on the production of PMFCs with different characteristics.
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/32482