Glioblastoma multiforme (GBM) is the most aggressive and common primary malignant brain tumor in adults, characterized by rapid growth, extensive infiltration, intratumoral heterogeneity, and profound resistance to standard therapies. Despite advances in surgical and chemo-radiotherapeutic approaches, prognosis remains poor, highlighting the need for preclinical models that faithfully reproduce the molecular, immunological, and microenvironmental complexity of human GBM. Among the available systems, the SB28 syngeneic mouse model has recently emerged as a highly relevant platform due to its close resemblance to the immune landscape of patient-derived tumors. The first goal of this thesis was the in-depth characterization and validation of the SB28 model. Through molecular profiling, intracranial implantation in immunocompetent mice, longitudinal MRI imaging, and extensive immunohistochemical analyses, we assessed tumor development, glial activation, and immune cell infiltration. Importantly, these evaluations were conducted across multiple time points, allowing us to monitor how the tumor cells interact with and progressively reshape their surroundings during disease progression. The second goal focused on elucidating the role of AXL, a receptor tyrosine kinase belonging to the TAM (TYRO3, AXL, MERTK) family, widely implicated in tumor cell survival, invasion, angiogenesis, and immunosuppression. We analyzed AXL and its associated pathway components (GAS6, ADAM10, ADAM17) across rodent (rat and mouse) and human glioma cell lines, confirming distinct molecular signatures. In vivo, the temporal analysis of tumor-bearing brains revealed that AXL expression is dynamically modulated during tumor progression. AXL was detected not only in tumor cells, where it supports proliferation and adaptation to hypoxic and stressed microenvironments, but also in reactive astrocytes, with intensity and distribution varying across time points. These findings indicate that AXL participates in multiple stages of SB28 tumor development, contributing both directly to tumor cell aggressiveness and indirectly to the establishment of an immunosuppressive TME. Collectively, our results highlight a dual role for AXL in GBM biology: a tumor-intrinsic function that promotes growth and invasiveness, and a tumor-extrinsic function that modulates astrocytic reactivity. The temporal resolution of our analyses further underscores AXL involvement throughout disease progression, positioning it as a promising molecular target for therapeutic strategies aimed at simultaneously disrupting tumor progression and reshaping the TME. In conclusion, this thesis reinforces the SB28 model as a robust and translationally relevant platform for the study of GBM and provides novel insights into the dynamics of AXL during glioblastoma evolution.
Il glioblastoma multiforme (GBM) rappresenta il tumore cerebrale primitivo maligno più aggressivo e più frequente nell’adulto, caratterizzato da rapida crescita, estesa infiltrazione, marcata eterogeneità intra-tumorale e profonda resistenza alle terapie standard. Nonostante i progressi nelle strategie chirurgiche e chemio-radioterapiche, la prognosi rimane infausta, evidenziando la necessità di modelli preclinici in grado di riprodurre fedelmente la complessità molecolare, immunologica e micro-ambientale del GBM umano. Tra i sistemi disponibili, il modello murino sinergico SB28 è recentemente emerso come una piattaforma di elevata rilevanza grazie alla sua stretta somiglianza con il panorama immunitario dei tumori derivati dai pazienti. Il primo obiettivo di questa tesi è stato la caratterizzazione e la validazione approfondita del modello SB28. Attraverso analisi di profilazione molecolare, impianto intracranico in topi immunocompetenti, imaging longitudinale mediante risonanza magnetica e approfondite analisi immunoistochimiche, abbiamo valutato lo sviluppo tumorale, l’attivazione gliale e l’infiltrazione delle cellule immunitarie. Tali valutazioni sono state condotte in diversi punti temporali, consentendo di monitorare l’interazione delle cellule tumorali con il microambiente e la sua progressiva rimodellazione durante la progressione della malattia. Il secondo obiettivo è stato volto a chiarire il ruolo di AXL, una tirosin-chinasi recettoriale appartenente alla famiglia TAM (TYRO3, AXL, MERTK), ampiamente implicata nella sopravvivenza delle cellule tumorali, nell’invasione, nell’angiogenesi e nei processi di immunosoppressione. Abbiamo analizzato AXL e i componenti associati della sua via di segnalazione (GAS6, ADAM10, ADAM17) in linee cellulari di glioma murine (ratto e topo) e umane, confermando la presenza di distinte firme molecolari. In vivo, l’analisi temporale dei cervelli portatori di tumore ha rivelato che l’espressione di AXL è dinamicamente modulata durante la progressione tumorale. AXL è stato rilevato non solo nelle cellule tumorali, dove supporta la proliferazione e l’adattamento a microambienti ipossici e stressanti, ma anche negli astrociti reattivi, con intensità e distribuzione variabili nel tempo. Questi risultati indicano che AXL partecipa a molteplici fasi dello sviluppo tumorale SB28, contribuendo sia direttamente all’aggressività delle cellule neoplastiche sia indirettamente alla formazione di un microambiente tumorale (TME) immunosoppressivo. Nel complesso, i nostri dati evidenziano un duplice ruolo di AXL nella biologia del GBM: una funzione tumorale intrinseca che promuove crescita e invasività e una funzione tumorale estrinseca che modula la reattività astrocitaria. La risoluzione temporale delle nostre analisi sottolinea ulteriormente il coinvolgimento di AXL lungo l’intero decorso della malattia, configurandolo come un promettente bersaglio molecolare per strategie terapeutiche volte a interrompere simultaneamente la progressione tumorale e a rimodellare il microambiente tumorale. In conclusione, questa tesi rafforza il modello SB28 come piattaforma robusta e di elevata rilevanza traslazionale per lo studio del GBM e fornisce nuove evidenze sui meccanismi dinamici che regolano l’attività di AXL durante l’evoluzione del glioblastoma.
Caratterizzazione del modello singenico di topo SB28 di glioblastoma, ed implicazione del pathway di AXL nella patologia.
ALESSANDRONI, MATILDA
2024/2025
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common primary malignant brain tumor in adults, characterized by rapid growth, extensive infiltration, intratumoral heterogeneity, and profound resistance to standard therapies. Despite advances in surgical and chemo-radiotherapeutic approaches, prognosis remains poor, highlighting the need for preclinical models that faithfully reproduce the molecular, immunological, and microenvironmental complexity of human GBM. Among the available systems, the SB28 syngeneic mouse model has recently emerged as a highly relevant platform due to its close resemblance to the immune landscape of patient-derived tumors. The first goal of this thesis was the in-depth characterization and validation of the SB28 model. Through molecular profiling, intracranial implantation in immunocompetent mice, longitudinal MRI imaging, and extensive immunohistochemical analyses, we assessed tumor development, glial activation, and immune cell infiltration. Importantly, these evaluations were conducted across multiple time points, allowing us to monitor how the tumor cells interact with and progressively reshape their surroundings during disease progression. The second goal focused on elucidating the role of AXL, a receptor tyrosine kinase belonging to the TAM (TYRO3, AXL, MERTK) family, widely implicated in tumor cell survival, invasion, angiogenesis, and immunosuppression. We analyzed AXL and its associated pathway components (GAS6, ADAM10, ADAM17) across rodent (rat and mouse) and human glioma cell lines, confirming distinct molecular signatures. In vivo, the temporal analysis of tumor-bearing brains revealed that AXL expression is dynamically modulated during tumor progression. AXL was detected not only in tumor cells, where it supports proliferation and adaptation to hypoxic and stressed microenvironments, but also in reactive astrocytes, with intensity and distribution varying across time points. These findings indicate that AXL participates in multiple stages of SB28 tumor development, contributing both directly to tumor cell aggressiveness and indirectly to the establishment of an immunosuppressive TME. Collectively, our results highlight a dual role for AXL in GBM biology: a tumor-intrinsic function that promotes growth and invasiveness, and a tumor-extrinsic function that modulates astrocytic reactivity. The temporal resolution of our analyses further underscores AXL involvement throughout disease progression, positioning it as a promising molecular target for therapeutic strategies aimed at simultaneously disrupting tumor progression and reshaping the TME. In conclusion, this thesis reinforces the SB28 model as a robust and translationally relevant platform for the study of GBM and provides novel insights into the dynamics of AXL during glioblastoma evolution.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Alessandroni_Matilda .pdf
non disponibili
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Richiedi una copia |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/32701