In surgical operations that require the creation of the patient's extracorporeal circulation circuit, the “Dynamic Bubble Trap” (DBT) filter is used. This is inserted inside a cannula and placed in series with the patient's extracorporeal circulation. The DBT acts on the blood flow through centrifugal forces, due to the shape of the filter and the diffusion chamber of the cannula. In this way, a vortex flow is established that pushes the air bubbles present in the blood to align with the axis of the cannula. This arrangement facilitates their removal by an aspirator. A total of five simulations were carried out, used to validate the operation of the entire system. In each one is considered the cannula, filled with a fluid, and air bubbles, placed before the DBT filter, with a diameter of 5 mm. This datum is imposed by the computational calculation grid necessary to carry out the simulations. The one used has about 3 * 10^5 elements, which determines simulations that require an average of 6 hours each. Furthermore, where the blood aspirator is present, a plane transversal to the axis of the cannula is considered. Through this, sections of the air masses were obtained, at which the distance of the centroid with the axis of the cannula and the radius is measured approximately. In the first simulation, an inlet flow of 1.5 l/min of liquid water and a single air bubble is considered. The bubble enters the filter, and, in 0.32 s, the processed air mass begins to exit it. The entire expulsion and positioning phase in the cannula axis last 1.4 s, but adjacent to the filter. Subsequently, the mass detaches from the filter and reaches the outlet in 0.94 s. The measured radius is 2.4 mm. In the second simulation the same case was faced, but with five air bubbles. This time, their processing and arrangement in front of the filter takes 0.79 s. Then, much of the mass breaks off and splits into two parts. The first reaches the outlet in 0.49 s and the second in 0.67 s. The remaining part of the mass remains adjacent to the filter for the entire duration of the simulation. The radii were considered, and it was found to be 2.7 mm for the first mass and 0.2 mm for the remaining two. In the third simulation the case is like the previous one, but with an inlet flow of 5 l/min. Here there is no accumulation phase next to the filter and the processed air masses continue along the axis, taking 0.36 s to exit through the outlet. The measured radii show a maximum value of 0.8 mm. In the fourth simulation, the previous case is carried out on a single air bubble. The bubble is processed by the filter and in 0.06 s, it starts to come out. In this case, a stall phase is not noticed next to the filter, but the mass immediately continues along the axis of the cannula, completely exiting after 0.34 s. The measured radii show a maximum value of 1 mm. In the fifth and last simulation the third case is reconsidered, but using blood as the fluid (characterized by a density equal to 1052 kg/m^3, viscosity equal to 4.51 * 10^-3 kg/m*s, approximately 4 times higher than that of water, and surface tension equal to 0.058 N/m). The bubbles are processed by the filter and exit the cannula in 0.54 s. the radius shows a maximum value of about 0.9 mm. In conclusion, through a qualitative and quantitative comparison of the simulations with the respective experimental data, carried out by the Bioengineering laboratory of the Cardiocentro Ticino (Lugano, Switzerland), no inconsistencies were found. Consequently, the computational model created is considered valid. It highlights how there is a greater alignment and a smaller radius if the volume of the air mass is greater and if the fluid has higher density and viscosity characteristics.
Nelle operazioni chirurgiche che prevedono la realizzazione del circuito della circolazione extracorporea del paziente, trova applicazione il filtro “Dynamic Bubble Trap” (DBT). Questo viene inserito all’interno di una cannula, posta in serie alla circolazione extracorporea del paziente. Il DBT agisce sul flusso di sangue attraverso delle forze centrifughe, dovute dalla forma del filtro e della camera di diffusione della cannula. In questo modo, viene instaurato un flusso vorticoso che spinge le bolle d’aria presenti nel sangue ad allinearsi all’asse della cannula. Questa particolare disposizione facilita la loro rimozione, da parte di un aspiratore. Sono state realizzate un totale di cinque simulazioni, utilizzate per validare il funzionamento dell’intero sistema. In ciascuna è considerata la cannula, riempita con un fluido, e delle bolle d’aria, poste prima del filtro DBT, dal diametro di 5 mm. Questo dato è imposto dalla griglia di calcolo computazionale necessaria allo svolgimento delle simulazioni. Quella utilizzata ha circa 3 * 10^5 elementi, che determina simulazioni che necessitano una media di 6 ore l’una. Inoltre, dove è presente l’aspiratore di sangue, si considera un piano trasversale all’asse della cannula. Tramite questo si sono ottenute sezioni delle masse d’aria, alle quali viene misurata, approssimativamente, la distanza del centroide con l’asse della cannula e il raggio. Nella prima simulazione si considera un flusso di ingresso di 1,5 l/min di acqua allo stato liquido ed un’unica bolla d’aria. La bolla entra nel filtro e, in 0,32 s, la massa d’aria processata inizia a fuoriuscire. Dura 1,4 s l’intera fase di espulsione e posizionamento nell’asse della cannula, ma adiacentemente al filtro. Successivamente, la massa si stacca e raggiunge l’outlet in 0,94 s. Il raggio misurato è di 2,4 mm. Nella seconda simulazione si affrontata il medesimo caso, ma con cinque bolle d’aria. Il loro processamento e disposizione davanti al filtro dura 0,79 s, suddividendosi, in seguito, in tre parti. La prima raggiunge l’outlet in 0,49 s e la seconda in 0,67 s. La restante parte della massa rimane adiacente al filtro per l’intera durata della simulazione. I raggi sono stati considerati, pari a 2,7 mm per la prima massa e di 0,2 mm per le due rimanenti. Nella terza simulazione il caso è simile a quello precedente, ma con un flusso di ingresso di 5 l/min. Qui non si riscontra la fase di ammassamento accanto al filtro e le masse d’aria processate proseguono lungo l’asse, impiegando 0,36 s uscire completamente dall’outlet. I raggi misurati mostrano un valore massimo di 0,8 mm. Nella quarta simulazione viene svolto il caso precedente su un’unica bolla d’aria. La bolla viene processata dal filtro e, in 0,06 s, inizia ad uscire. Non si nota, in questo caso, una fase di stallo accanto al filtro, ma la massa prosegue subito lungo l’asse della cannula, uscendo completamente dopo 0,34 s. I raggi misurati mostrano un valore massimo di 1 mm. Nella quinta ed ultima simulazione viene riconsiderata la terza, ma utilizzando come fluido il sangue (caratterizzato da una densità pari a 1052 kg/m^3, viscosità pari a 4,51 * 10^-3 kg/m*s, circa 4 volte maggiore rispetto a quella dell’acqua, e tensione superficiale pari a 0,058 N/m). Le bolle vengono processate dal filtro ed escono dalla cannula in 0,54 s. il raggio mostra un valore massimo di circa 0,9 mm. Concludendo, attraverso un confronto qualitativo e quantitativo delle simulazioni con i rispettivi dati sperimentali, ottenuti dal laboratorio di Bioingegneria del Cardiocentro Ticino (Lugano, Svizzera), non si sono riscontrate particolari incongruenze. Di conseguenza, si considera valido il modello computazionale realizzato. Si evidenzia, in particolare, come si ha un allineamento maggiore ed un raggio minore se il volume della massa d’aria è maggiore e se il fluido presenta caratteristiche di densità e viscosità maggiori.
Computational fluid dynamics analysis of an embolic filter of the Dynamic Bubble Trap type
CURELLA, LORENZO
2019/2020
Abstract
In surgical operations that require the creation of the patient's extracorporeal circulation circuit, the “Dynamic Bubble Trap” (DBT) filter is used. This is inserted inside a cannula and placed in series with the patient's extracorporeal circulation. The DBT acts on the blood flow through centrifugal forces, due to the shape of the filter and the diffusion chamber of the cannula. In this way, a vortex flow is established that pushes the air bubbles present in the blood to align with the axis of the cannula. This arrangement facilitates their removal by an aspirator. A total of five simulations were carried out, used to validate the operation of the entire system. In each one is considered the cannula, filled with a fluid, and air bubbles, placed before the DBT filter, with a diameter of 5 mm. This datum is imposed by the computational calculation grid necessary to carry out the simulations. The one used has about 3 * 10^5 elements, which determines simulations that require an average of 6 hours each. Furthermore, where the blood aspirator is present, a plane transversal to the axis of the cannula is considered. Through this, sections of the air masses were obtained, at which the distance of the centroid with the axis of the cannula and the radius is measured approximately. In the first simulation, an inlet flow of 1.5 l/min of liquid water and a single air bubble is considered. The bubble enters the filter, and, in 0.32 s, the processed air mass begins to exit it. The entire expulsion and positioning phase in the cannula axis last 1.4 s, but adjacent to the filter. Subsequently, the mass detaches from the filter and reaches the outlet in 0.94 s. The measured radius is 2.4 mm. In the second simulation the same case was faced, but with five air bubbles. This time, their processing and arrangement in front of the filter takes 0.79 s. Then, much of the mass breaks off and splits into two parts. The first reaches the outlet in 0.49 s and the second in 0.67 s. The remaining part of the mass remains adjacent to the filter for the entire duration of the simulation. The radii were considered, and it was found to be 2.7 mm for the first mass and 0.2 mm for the remaining two. In the third simulation the case is like the previous one, but with an inlet flow of 5 l/min. Here there is no accumulation phase next to the filter and the processed air masses continue along the axis, taking 0.36 s to exit through the outlet. The measured radii show a maximum value of 0.8 mm. In the fourth simulation, the previous case is carried out on a single air bubble. The bubble is processed by the filter and in 0.06 s, it starts to come out. In this case, a stall phase is not noticed next to the filter, but the mass immediately continues along the axis of the cannula, completely exiting after 0.34 s. The measured radii show a maximum value of 1 mm. In the fifth and last simulation the third case is reconsidered, but using blood as the fluid (characterized by a density equal to 1052 kg/m^3, viscosity equal to 4.51 * 10^-3 kg/m*s, approximately 4 times higher than that of water, and surface tension equal to 0.058 N/m). The bubbles are processed by the filter and exit the cannula in 0.54 s. the radius shows a maximum value of about 0.9 mm. In conclusion, through a qualitative and quantitative comparison of the simulations with the respective experimental data, carried out by the Bioengineering laboratory of the Cardiocentro Ticino (Lugano, Switzerland), no inconsistencies were found. Consequently, the computational model created is considered valid. It highlights how there is a greater alignment and a smaller radius if the volume of the air mass is greater and if the fluid has higher density and viscosity characteristics.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12646