The vast majority of patients affected by rare genetic diseases (RGDs) remain undiagnosed for years, resulting in a “diagnostic odyssey” for patients and their families. The revolutionizing impact of whole-exome sequencing (WES) technologies in clinical laboratories over the past ten years has greatly improved our ability to diagnose RGDs. However, about 50% of patients remain undiagnosed after WES. These “missed” diagnoses are due to the major limitation of WES, a technique covering only the 2% of the human genome, namely the protein-coding regions. As a consequence, it is unable to detect the so called “cryptic variants”, which include non-coding variants affecting splicing or regulatory elements. The aim of this work is to improve the diagnostic rate in RGDs by focusing on cryptic variants in known disease-causing genes, variants that escape routine diagnostic strategies. As a proof-of-concept, we decided to focus on Joubert Syndrome (JS), a recessively inherited rare disorder associated to pathogenic variants in over 40 genes. For this purpose, we have selected 29 patients carrying heterozygous potentially deleterious variants in six major JS genes with a compatible phenotype, as we expect these subjects have the highest chances of bearing a second cryptic mutation in the same gene. We prioritized cryptic variants identified by WES based on their potential to alter splicing or to affect regulatory elements such as enhancers, selecting 11 variants and one variant, respectively. Those variants have been functionally validated by in vitro assays: for cryptic variants potentially altering splicing, we have used the pSPL3 MINIGENE plasmid; for variants affecting putative enhancer regions, we have used the pGL4.23 Luciferase Reporter Vector system. Five out of 11 cryptic splicing variants have been functionally validated, corroborating their ability to alter physiological splicing, and leading to a definitive diagnosis in 5 out of 29 previously undiagnosed patients of our cohort. About the regulatory variant, our preliminary results are not conclusive and further experiments are required. Our results further corroborate the importance of focusing on cryptic variants to improve the diagnostic rate in RGDs, suggesting that new pipelines for NGS data analysis and innovative in vitro functional assays might be considered in the routinely diagnostic setting.
Saggi funzionali in vitro per valutare l'impatto delle varianti criptiche nelle malattie genetiche rare. La maggioranza degli individui affetti da malattie genetiche rare rimane senza una diagnosi certa per anni, con conseguente "odissea diagnostica" per i pazienti e per le loro famiglie. Negli ultimi dieci anni, l'impatto rivoluzionario della tecnologia di sequenziamento dell'intero esoma (Whole Exome Sequencing - WES) nei laboratori clinici ha migliorato notevolmente la capacità di diagnosticare le malattie genetiche rare. Tuttavia, circa il 50% dei pazienti rimane non diagnosticato dopo l’analisi WES, in quanto questa tecnica ha come principale limitazione il sequenziamento solo del 2% del genoma umano, ovvero le regioni codificanti per le proteine. Di conseguenza, non è in grado di rilevare le cosiddette "varianti criptiche", tra cui varianti non codificanti che influenzano lo splicing o varianti che alterano gli elementi regolatori. L'obiettivo di questo lavoro è migliorare il tasso diagnostico delle malattie genetiche rare, attenzionando specificatamente varianti criptiche in geni causativi noti, varianti che sfuggono alle strategie diagnostiche classiche. Come prova di concetto, abbiamo deciso di focalizzarci sulla sindrome di Joubert (JS), una malattia rara recessiva associata a varianti patogenetiche in oltre 40 geni, andando a ricercare in maniera sistematica possibili varianti criptiche. A questo scopo, abbiamo selezionato 29 pazienti portatori di varianti eterozigoti potenzialmente deleterie nei sei geni principali della JS e con fenotipo compatibile, poiché ci aspettiamo che questi soggetti abbiano le maggiori probabilità di presentare una seconda mutazione criptica nello stesso gene. Abbiamo prioritizzato le varianti criptiche identificate mediante analisi WES in base alla loro predetta capacità di alterare lo splicing o elementi regolatori quali gli enhancer, selezionandone rispettivamente 11 e una. Queste varianti sono state validate funzionalmente mediante saggi in vitro: per le varianti criptiche potenzialmente in grado di alterare lo splicing, abbiamo utilizzato il plasmide pSPL3 MINIGENE; per le varianti potenzialmente in grado di alterare enhancer, abbiamo utilizzato il sistema pGL4.23 Luciferase Reporter Vector. Cinque delle 11 varianti criptiche di splicing sono state analizzate in vitro e tutte sono state convalidate funzionalmente, corroborando la loro capacità di alterare lo splicing fisiologico. Ciò ci ha permesso di giungere a una diagnosi definitiva in 5 dei 29 pazienti della nostra corte, pazienti precedentemente non diagnosticati. Per quanto riguarda la variante regolatoria, i nostri risultati preliminari non sono conclusivi e sono necessari ulteriori esperimenti.I nostri risultati confermano ulteriormente l'importanza di concentrarsi sulle varianti criptiche per aumentare il tasso diagnostico nelle malattie genetiche rare, suggerendo che nuove pipelines per l'analisi dei dati NGS e saggi funzionali innovativi in vitro potrebbero essere presi in considerazione nel contesto diagnostico di routine.
In vitro functional assays to assess the impact of cryptic variants in rare genetic diseases
TACCAGNI, CECILIA MARIA
2021/2022
Abstract
The vast majority of patients affected by rare genetic diseases (RGDs) remain undiagnosed for years, resulting in a “diagnostic odyssey” for patients and their families. The revolutionizing impact of whole-exome sequencing (WES) technologies in clinical laboratories over the past ten years has greatly improved our ability to diagnose RGDs. However, about 50% of patients remain undiagnosed after WES. These “missed” diagnoses are due to the major limitation of WES, a technique covering only the 2% of the human genome, namely the protein-coding regions. As a consequence, it is unable to detect the so called “cryptic variants”, which include non-coding variants affecting splicing or regulatory elements. The aim of this work is to improve the diagnostic rate in RGDs by focusing on cryptic variants in known disease-causing genes, variants that escape routine diagnostic strategies. As a proof-of-concept, we decided to focus on Joubert Syndrome (JS), a recessively inherited rare disorder associated to pathogenic variants in over 40 genes. For this purpose, we have selected 29 patients carrying heterozygous potentially deleterious variants in six major JS genes with a compatible phenotype, as we expect these subjects have the highest chances of bearing a second cryptic mutation in the same gene. We prioritized cryptic variants identified by WES based on their potential to alter splicing or to affect regulatory elements such as enhancers, selecting 11 variants and one variant, respectively. Those variants have been functionally validated by in vitro assays: for cryptic variants potentially altering splicing, we have used the pSPL3 MINIGENE plasmid; for variants affecting putative enhancer regions, we have used the pGL4.23 Luciferase Reporter Vector system. Five out of 11 cryptic splicing variants have been functionally validated, corroborating their ability to alter physiological splicing, and leading to a definitive diagnosis in 5 out of 29 previously undiagnosed patients of our cohort. About the regulatory variant, our preliminary results are not conclusive and further experiments are required. Our results further corroborate the importance of focusing on cryptic variants to improve the diagnostic rate in RGDs, suggesting that new pipelines for NGS data analysis and innovative in vitro functional assays might be considered in the routinely diagnostic setting.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/15622