The importance of functionalized heterocycles in medicinal chemistry is well known. This calls for mild and efficient procedures for the introduction of substituents onto a preformed heterocycle. One classic example is the Minisci reaction, a protocol in which the thermal generation of radicals via decarboxylation of carboxylic acids mediated by an silver(I) salt as a catalyst in the presence of a persulfate anion is involved. Radicals then attacked the protonated heterocycle and gave the desired alkylated derivatives via one-electron oxidation and deprotonation. A more challenging approach, however, consists in the Minisci reaction via radicals formed by hydrogen abstraction from C–H bonds. Sparse examples were recently described, where radicals were obtained from ethers, aldehydes, amides, toluenes and even alkanes by homolytic C–H cleavage. Some drawbacks are apparent in the exploitation of the latter approaches. In fact, the proposed protocols are in most cases limited to the use of only a particular class of hydrogen donors (mostly ethers, due to the easy formation of alfa-oxy radicals). The compulsory use of a high temperature and/or hazardous organic peroxides, and the fact that a general method for the generation of alkyl radicals from R–H to be used in Minisci reaction is still lacking, calls for milder approaches. In this regard, seminal efforts have been made in the recent procedures based on visible light photoredox catalysis. We had experience in the use of tetrabutylammonium decatungstate (TBADT; (nBu4N)4[W10O32]) as an efficient and robust photocatalyst able to promote photoredox reactions, as well as hydrogen atom transfer processes, starting from different classes of organic substrates. Another important advantage of using TBADT is that it is active upon solar light irradiation. We envisaged that under appropriate conditions, TBADT could be used for the aromatic homolytic substitution of heterocycles via a cross-dehydrogenative coupling reaction with several hydrogen donors (R–H) as reaction partners. The method described here compares favorably with those previously reported involving C–H cleavage of the alkylating agent. This is a versatile approach since various substrates belonging to different classes of hydrogen donors such as ethers, amides, aldehydes, cycloalkanones, and even cycloalkanes can be activated. In case of quinaldine as heterocycle, coupling yields goes from 40 up to 80% with such donors. Differently from other procedures, the presence of a strong acid (e.g. TFA or sulfuric acid) is not required since protonation of the heterocycle took place during the reaction.
L'importanza degli eterocicli funzionalizzati in medicinal chemistry è ben nota. Di riflesso, risultano quindi importanti tutti quei metodi che possano funzionalizzare efficacemente dei nuclei eterociclici aromatici azotati. Un esempio classico è la reazione di Minisci, un protocollo in cui è coinvolta la generazione termica di radicali attraverso decarbossilazione di acidi carbossilici, mediata da un sale d'argento(I) come catalizzatore in presenza di un anione persolfato. I radicali attaccano quindi l'eterociclo protonato a dare i derivati alchilati desiderati attraverso l'ossidazione e la deprotonazione del radical catione addotto. Un approccio più stimolante consiste nella formazione di radicali attraverso estrazione di idrogeno dai legami C-H. Sono stati recentemente descritti alcuni esempi, nei quali i radicali sono stati ottenuti da eteri, aldeidi, ammidi, tolueni e perfino alcani per rottura omolitica termica o fotoindotta di legami C-H. Alcuni inconvenienti sono evidenti in questi ultimi approcci. In effetti, i protocolli proposti sono nella maggior parte dei casi limitati all'uso di una particolare classe di donatori di idrogeno (principalmente eteri, a causa della facile formazione di alfa-ossi radicali). L’inevitabile uso di alte temperature e/o pericolosi perossidi organici ed il fatto che manca ancora un metodo generale per generare alchil radicali tramite attivazione C-H, rende necessario lo sviluppo di una procedura in cui le condizioni di reazione siano blande. A questo proposito, sono stati fatti sforzi profondi nelle recenti procedure basate sulla catalisi fotoredox via luce visibile. Il nostro gruppo di ricerca ha esperienza nell'uso del decatungstato di tetrabutilammonio (TBADT; (nBu4N)4[W10O32]) come fotocatalizzatore efficiente e robusto in grado di promuovere le reazioni fotoredox, così come i processi di hydrogen atom transfer, a partire da diverse classi di substrati organici. Un altro importante vantaggio dell'utilizzo del TBADT è che può essere attivato da luce solare. In condizioni appropriate, TBADT può essere usato per la sostituzione omolitica aromatica di eterocicli attraverso una reazione di cross-coupling deidrogenativo con diversi donatori di idrogeno come partner di reazione. Il metodo qui descritto appare chiaramente vantaggioso se comparato con quelli precedentemente riportati che coinvolgono l'attivazione di un legame C-H dell'agente alchilante. Innanzitutto, questo è un approccio versatile poiché possono essere attivati vari substrati appartenenti a diverse classi di donatori di idrogeno, come eteri, ammidi, aldeidi, cicloalcanoni e persino cicloalcani. Con questi donor, usando la chinaldina come eterociclo, le rese di coupling vanno dal 40 al 80%. Diversamente da altre procedure, la presenza di un acido forte (e.g.: TFA o acido solforico) non è richiesta poiché la protonazione dell'eterociclo ha luogo durante la reazione.
Funzionalizzazione di eteroaromatici via cross-coupling deidrogenativo fotocatalizzato da decatungtstato
QUATTRINI, MATTEO CARLO
2016/2017
Abstract
The importance of functionalized heterocycles in medicinal chemistry is well known. This calls for mild and efficient procedures for the introduction of substituents onto a preformed heterocycle. One classic example is the Minisci reaction, a protocol in which the thermal generation of radicals via decarboxylation of carboxylic acids mediated by an silver(I) salt as a catalyst in the presence of a persulfate anion is involved. Radicals then attacked the protonated heterocycle and gave the desired alkylated derivatives via one-electron oxidation and deprotonation. A more challenging approach, however, consists in the Minisci reaction via radicals formed by hydrogen abstraction from C–H bonds. Sparse examples were recently described, where radicals were obtained from ethers, aldehydes, amides, toluenes and even alkanes by homolytic C–H cleavage. Some drawbacks are apparent in the exploitation of the latter approaches. In fact, the proposed protocols are in most cases limited to the use of only a particular class of hydrogen donors (mostly ethers, due to the easy formation of alfa-oxy radicals). The compulsory use of a high temperature and/or hazardous organic peroxides, and the fact that a general method for the generation of alkyl radicals from R–H to be used in Minisci reaction is still lacking, calls for milder approaches. In this regard, seminal efforts have been made in the recent procedures based on visible light photoredox catalysis. We had experience in the use of tetrabutylammonium decatungstate (TBADT; (nBu4N)4[W10O32]) as an efficient and robust photocatalyst able to promote photoredox reactions, as well as hydrogen atom transfer processes, starting from different classes of organic substrates. Another important advantage of using TBADT is that it is active upon solar light irradiation. We envisaged that under appropriate conditions, TBADT could be used for the aromatic homolytic substitution of heterocycles via a cross-dehydrogenative coupling reaction with several hydrogen donors (R–H) as reaction partners. The method described here compares favorably with those previously reported involving C–H cleavage of the alkylating agent. This is a versatile approach since various substrates belonging to different classes of hydrogen donors such as ethers, amides, aldehydes, cycloalkanones, and even cycloalkanes can be activated. In case of quinaldine as heterocycle, coupling yields goes from 40 up to 80% with such donors. Differently from other procedures, the presence of a strong acid (e.g. TFA or sulfuric acid) is not required since protonation of the heterocycle took place during the reaction.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/22382