This work is dedicated to the analysis of Kenneth J. Arrow’s impossibility theorem, a cornerstone result in social choice theory, with the aim of systematically and thoroughly studying its historical origins, its mathematical formalization, and the main generalizations developed subsequently. After a historical reconstruction of the context in which Arrow formulated his theorem, the axioms that form its foundation are formally introduced, followed by a rigorous proof. Three alternative proofs are then examined, shorter and more intuitive yet preserving full logical rigor: one based on the identification of an extremely decisive voter, another on Condorcet’s cyclical profiles, and a third built upon the strict neutrality lemma. The central part of the thesis explores attempts to weaken some of the theorem’s axioms, with particular attention to the independence of irrelevant alternatives. The contribution of Campbell and Kelly is analyzed, where they explore weaker forms of independence and show how even these lead to analogous impossibility results. The Borda count is also discussed as an example of a social choice function that, while violating classical independence, satisfies the theorem’s remaining conditions. Finally, an original geometric approach to Arrow’s theorem is proposed, based on the analysis of discrete structures, such as the truncated cube introduced by D. Saari, which provides a visual representation of the axioms and the implicit contradictions in social choice functions. This thesis therefore aims not only to understand Arrow’s result in its original formulation but also to explore its extensions, offering a comprehensive and critical perspective that highlights both its theoretical power and its limits, as well as possible ways to overcome them.
Il presente lavoro è dedicato all’analisi del teorema di impossibilità di Kenneth J. Arrow, un risultato cardine nella teoria della scelta sociale, con l’obiettivo di studiarne in modo sistematico e approfondito le origini storiche, la sua formalizzazione matematica e le principali generalizzazioni sviluppate successivamente. Dopo una ricostruzione storica del contesto in cui Arrow formulò il suo teorema, si introducono formalmente gli assiomi che ne costituiscono il fondamento e se ne presenta una dimostrazione rigorosa. Vengono poi esaminate tre dimostrazioni alternative, più brevi e intuitive, che tuttavia mantengono intatto il rigore logico: una costruita a partire dall’individuazione di un elettore estremamente decisivo, una basata su profili ciclici di Condorcet e una fondata sul Lemma di neutralità stretta. La parte centrale della tesi esplora i tentativi di indebolire alcuni degli assiomi del teorema, con particolare attenzione all’indipendenza dalle alternative irrilevanti. Si esamina il contributo di Campbell e Kelly in cui esplorano condizioni di indipendenza più deboli e mostrano come, anche queste, conducano a risultati analoghi di impossibilità. Si discute inoltre il metodo di Borda come esempio di funzione di scelta sociale che, pur violando l’indipendenza classica, soddisfa le restanti condizioni del teorema. Infine, si propone un originale approccio geometrico al teorema di Arrow, basato sull’analisi di strutture discrete, come il cubo troncato proposto da D. Saari, che offre una rappresentazione visiva degli assiomi e delle contraddizioni implicite nelle funzioni di scelta sociale. Questa tesi mira quindi non solo a comprendere il risultato di Arrow nella sua formulazione originaria, ma anche a esplorarne le estensioni, offrendo una visione completa e critica che ne evidenzi tanto la potenza teorica quanto i limiti e le possibili vie di superamento.
Il Teorema di Arrow: genesi storica, formalizzazione matematica e generalizzazioni
RUTIGLIANO, ALESSANDRA
2024/2025
Abstract
This work is dedicated to the analysis of Kenneth J. Arrow’s impossibility theorem, a cornerstone result in social choice theory, with the aim of systematically and thoroughly studying its historical origins, its mathematical formalization, and the main generalizations developed subsequently. After a historical reconstruction of the context in which Arrow formulated his theorem, the axioms that form its foundation are formally introduced, followed by a rigorous proof. Three alternative proofs are then examined, shorter and more intuitive yet preserving full logical rigor: one based on the identification of an extremely decisive voter, another on Condorcet’s cyclical profiles, and a third built upon the strict neutrality lemma. The central part of the thesis explores attempts to weaken some of the theorem’s axioms, with particular attention to the independence of irrelevant alternatives. The contribution of Campbell and Kelly is analyzed, where they explore weaker forms of independence and show how even these lead to analogous impossibility results. The Borda count is also discussed as an example of a social choice function that, while violating classical independence, satisfies the theorem’s remaining conditions. Finally, an original geometric approach to Arrow’s theorem is proposed, based on the analysis of discrete structures, such as the truncated cube introduced by D. Saari, which provides a visual representation of the axioms and the implicit contradictions in social choice functions. This thesis therefore aims not only to understand Arrow’s result in its original formulation but also to explore its extensions, offering a comprehensive and critical perspective that highlights both its theoretical power and its limits, as well as possible ways to overcome them.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi Magistrale Rutigliano.pdf
accesso aperto
Dimensione
705.64 kB
Formato
Adobe PDF
|
705.64 kB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/30186