English Abstract Glioblastoma multiforme (GBM) remains one of the most lethal and treatment-refractory primary brain tumors, characterized by high invasiveness, profound intratumoral heterogeneity, and poor response to conventional therapies. Boron Neutron Capture Therapy (BNCT) has emerged as a promising targeted radiotherapy modality, leveraging the selective accumulation of 10B in tumor cells followed by neutron irradiation to induce high-linear energy transfer (LET) radiation damage with minimal impact on surrounding healthy tissues. The efficacy of BNCT critically depends on the properties of the boron delivery agents, particularly their solubility, cytocompatibility, tumor selectivity, and ability to enhance radiation-induced cytotoxicity. In this study, we conducted a comparative evaluation of two novel boron-containing compounds BIX and MOX, in established human glioblastoma cell lines, T98G and U251-MG. Our aim was to assess the physicochemical and biological characteristics of these compounds in vitro and determine their potential as boron delivery agents for BNCT. Solubility tests were first conducted under physiological conditions, confirming adequate aqueous solubility for both compounds. Cytotoxicity was evaluated using MTT assays across multiple concentrations, demonstrating low basal toxicity in both cell lines and establishing suitable working concentrations for further experimentation. To quantify intracellular boron accumulation, cells were incubated with BIX and MOX and analyzed via Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES). BIX showed significantly higher intracellular boron accumulation compared to MOX in T98G cells; moreover, among the two cell lines analyzed, BIX accumulated to a greater extent in T98G cells than in U251-MG cells. The biological efficacy of boron delivery was further validated through thermal neutron irradiation experiments performed at L.E.N.A. reactor. Post-irradiation viability was assessed using MTT assays, and long-term clonogenic survival was evaluated in T98G cells and U251-MG. BIX-treated and irradiated cells displayed significantly reduced viability and colony-forming ability compared to controls. The data suggest that BIX is effective in selectively transporting 10B, highlighting its potential for application in BNCT. Overall, our findings highlight BIX as a superior candidate for BNCT, offering favorable solubility, low cytotoxicity, high intracellular boron accumulation, and robust enhancement of thermal neutron-induced cytotoxicity in glioblastoma cells. This study highlights the potential of BIX as a boron delivery agent and emphasizes the need for further preclinical validation and in vivo studies to support its clinical translation in BNCT for glioblastoma and other high-grade tumor.
Italian Abstract Il glioblastoma multiforme (GBM) è tuttora uno dei tumori cerebrali primari più letali e resistenti ai trattamenti, caratterizzato da un’elevata invasività, una profonda eterogeneità intratumorale e una scarsa risposta alle terapie convenzionali. La Boron Neutron Capture Therapy (BNCT) è emersa come una promettente modalità di radioterapia mirata, sfruttando l’accumulo selettivo di boro-10 (10B) nelle cellule tumorali seguito da irradiazione neutronica, per indurre danni da radiazione ad alto trasferimento lineare di energia (LET) con un impatto minimo sui tessuti sani circostanti. L’efficacia della BNCT dipende in modo critico dalle proprietà degli agenti veicolanti il boro, in particolare dalla loro solubilità, citocompatibilità, selettività tumorale e capacità di potenziare la citotossicità indotta dalle radiazioni. In questo studio è stata condotta una valutazione comparativa di due nuovi composti contenenti boro, BIX e MOX, su linee cellulari umane di glioblastoma consolidate, T98G e U251-MG. L’obiettivo era valutare le caratteristiche chimico-fisiche e biologiche di questi composti in vitro e determinarne il potenziale come agenti veicolanti il boro per la BNCT. I test di solubilità condotti in condizioni fisiologiche hanno confermato un’adeguata solubilità in acqua per entrambi i composti. La citotossicità è stata valutata tramite saggi MTT a diverse concentrazioni, evidenziando una bassa tossicità basale in entrambe le linee cellulari e permettendo l’identificazione di concentrazioni operative idonee per gli esperimenti successivi. Per quantificare l’accumulo intracellulare di boro, le cellule sono state incubate con concentrazioni non tossiche di BIX e MOX e analizzate tramite spettroscopia a emissione ottica con plasma accoppiato induttivamente (ICP-OES). BIX ha mostrato un accumulo intracellulare di boro significativamente superiore rispetto a MOX nelle cellule T98G; inoltre, tra le due linee cellulari analizzate, BIX si accumula in misura maggiore nelle cellule T98G rispetto alle U251-MG. L’efficacia biologica della veicolazione del boro è stata ulteriormente validata tramite esperimenti di irradiazione con neutroni termici presso il reattore L.E.N.A.. La vitalità cellulare post-irradiazione è stata valutata con saggi MTT, e la sopravvivenza clonogenica a lungo termine è stata esaminata nelle cellule T98G e U251-MG. Le cellule trattate con BIX e irradiate hanno mostrato una significativa riduzione della vitalità e della capacità di formazione di colonie rispetto ai controlli. I dati suggeriscono che BIX è efficace nel trasportare selettivamente 10B, evidenziando il suo potenziale per l’applicazione nella BNCT. Nel complesso, i nostri risultati indicano BIX come un candidato promettente per la BNCT, offrendo una buona solubilità, bassa citotossicità, elevato accumulo intracellulare di boro e un notevole potenziamento della citotossicità indotta dall’irraggaimento con neutron termici nelle cellule di glioblastoma. Questo studio evidenzia il potenziale di BIX come agente di trasporto del boro e sottolinea la necessità di ulteriori studi preclinici e in vivo per supportarne la traduzione clinica nella BNCT per il glioblastoma e altri tumori ad alto grado.
Valutazione Comparativa di Nuovi Composti a Base di Boro per un'Efficacia Potenziata della BNCT in Linee Cellulari di Glioblastoma
ABBASI GAMASAEE, NIUSHA
2024/2025
Abstract
English Abstract Glioblastoma multiforme (GBM) remains one of the most lethal and treatment-refractory primary brain tumors, characterized by high invasiveness, profound intratumoral heterogeneity, and poor response to conventional therapies. Boron Neutron Capture Therapy (BNCT) has emerged as a promising targeted radiotherapy modality, leveraging the selective accumulation of 10B in tumor cells followed by neutron irradiation to induce high-linear energy transfer (LET) radiation damage with minimal impact on surrounding healthy tissues. The efficacy of BNCT critically depends on the properties of the boron delivery agents, particularly their solubility, cytocompatibility, tumor selectivity, and ability to enhance radiation-induced cytotoxicity. In this study, we conducted a comparative evaluation of two novel boron-containing compounds BIX and MOX, in established human glioblastoma cell lines, T98G and U251-MG. Our aim was to assess the physicochemical and biological characteristics of these compounds in vitro and determine their potential as boron delivery agents for BNCT. Solubility tests were first conducted under physiological conditions, confirming adequate aqueous solubility for both compounds. Cytotoxicity was evaluated using MTT assays across multiple concentrations, demonstrating low basal toxicity in both cell lines and establishing suitable working concentrations for further experimentation. To quantify intracellular boron accumulation, cells were incubated with BIX and MOX and analyzed via Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES). BIX showed significantly higher intracellular boron accumulation compared to MOX in T98G cells; moreover, among the two cell lines analyzed, BIX accumulated to a greater extent in T98G cells than in U251-MG cells. The biological efficacy of boron delivery was further validated through thermal neutron irradiation experiments performed at L.E.N.A. reactor. Post-irradiation viability was assessed using MTT assays, and long-term clonogenic survival was evaluated in T98G cells and U251-MG. BIX-treated and irradiated cells displayed significantly reduced viability and colony-forming ability compared to controls. The data suggest that BIX is effective in selectively transporting 10B, highlighting its potential for application in BNCT. Overall, our findings highlight BIX as a superior candidate for BNCT, offering favorable solubility, low cytotoxicity, high intracellular boron accumulation, and robust enhancement of thermal neutron-induced cytotoxicity in glioblastoma cells. This study highlights the potential of BIX as a boron delivery agent and emphasizes the need for further preclinical validation and in vivo studies to support its clinical translation in BNCT for glioblastoma and other high-grade tumor.| File | Dimensione | Formato | |
|---|---|---|---|
|
NiushaAbbasiGamasaee_ThesisFinal.pdf
accesso aperto
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/30306